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Abstract

The present work aims at clarifying the domain of validity of
two continuum approaches by comparing their results to a reference
given by a Direct Simulation Monte Carlo method (DSMC). The first
continuum approach is based on the usual Navier-Stokes (NS} equa-
tions. The second one is based on the Quasi-Gas-Dynamic (QGD)
equations which are derived from Boltzmann equation with an ad-
ditional diffusion terin. The present paper includes a self-consistent
presentation of QGD equations. The flow around a flat plate has
been considered for a freestream Mach number varying from 1.5 to
20 and a wall temperature taken successively equal to freestream and
stagnation temperatures. A criterion is proposed for the validity of
the continuum approaches.

1 Introduction

The treatment of rarefied gas flows by means of equations based on the
mechanics of contintium media is desirable because solving such equations
requires less computational resources than methods based on a molecular
description. The present work aims at clarifying-the domain of validity of
two continuum approaches by comparing their results to a reference given
by a Direct Simulation Monte Carlo method (DSMC). The first continuum
approach is based on the usual Navier-Stokes (NS) equations, the second
one is based on the Quasi-Gas-Dynamic (QGD) equations. The latter
ones can be considered as a new model for the description of viscous gas
flows. The present report is also an opportunity to give self-consistent
presentation of QGD equations.
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2 Quasi Gas Dynamic model

QGD equations may be obtained based on Boltzmann equation (BE) with
additional diffusion terms, extracted from the collisional integral [4]. Using
cartesian coordinates and usual notations, QGD system writes as follows:

pr+ Viput = V;%(Vﬁu%ti + V'p) (2.1)
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Note that p/p = 7 is the time that characterizes the flow from a

molecular point of view and may be interpreted as the local mean colli-
sional time multiplied by a constant of the order of unity, that depends
only on the intermolecular potential. Note also that using popular non-
dimensional form and introducing Mach number A = u/a and Reynolds
number Re = puL/p makes the coeflicient M/Re appear before all the
right-hand terms in Eq. 2.1 - 2.3, as in NS system.

Considering the perfect gas equations

E=p(@/2+¢), e =p/p(v~1), p=pRT

and adding finally the initial and boundary conditions, we obtain a closed
system of equations which describes the space-tinie evolution of the macro-
scopic parameters of the gas: @ - velocity, p - density, p - pressure, F - total
energy, T - temperature, € - internal energy.

The first variant of QGD equations can be found in [6], [7]. A further
QGD development is presented in [9], [10] and {11].

Finite-difference schemes for QGD équations are closely related with
Kinetical-Consistent Finite Difference (KCFD) schemes constructed by au-
thors [6], [7], [8] earlier and based directly on a model BE or on a finite-
difference approximation of BE. The possibility of applying KCFD schemes
obtained in the latter way for computing slightly rarefied gases is considered
in {12].

QGD equations differ from NS equations by the structure of the dissi-
pative terms. They were proved to reduce to NS equations in the limiting
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case of small Knudsen numbers {9]. The continuity equation 2.1 includes
convective and molecular mass transfer and it features additional space
derivatives of higher order than the corresponding NS equation. This is
the reason why QGD system requires an additional boundary condition
(BC) compared with NS. That additional BC was applied to the pressure
gradient normal to the wall in the form

dp/on = 0. (2.4)

This relation provides that QGD expressions for mass flow, total energy
flux and viscous friction forces on the solid wall are the same as NS ones.
So the wall coefficients for heat transfer Cx and skin-friction Cy in both
models are defined in the same way. As for NS equations, others BC for
velocity vector and temperature can be written, either as v* =0, T =T,
(no slip) or according (e.g.) to [1] or [3] (velocity slip and temperature

jump).

3 Computational work

The comparison of the three above-mentioned models requires an identical
physical modelling of the gas for all three calculations. This was obtained
by considering a monoatoric hard-sphere gas (v = 5/3), whose transport
properties were represented in the continuum approaches by a &« T2
viscosity law and a constant Prandtl number (Pr = 2/3). Temperature T
identified with the translational temperature in DSMC.

The configuration retained was a semi-infinite sharp flat plate parallel
to the direction of the freestreamn. Five values of the Mach number were
considered (M = 1.5,2,5,10,20). The only length scale of the problem
was the mean free path A. For a given Mach number, the rarefaction level,
expressed in terms of any of the usual parameters (W1, Rew,, Rew, V, X)
could thus be varied by considering different values of the abscissa z, rang-
ing from 0 to approximately 100A. The wall temperature was set equal
successively to the freestream temperature (T, = Ty} and to the stagna-
tion temperature (T, = Tp). (Gas-surface interaction was characterized by
diffuse reflection with full accommodation at wall temperature.

NS code uses a finite-volume upwind implicit method with flux vector-
splitting of Steger and Warming [5]. QGD code uses second order finite-
volume space approximation in explicit form. This numerical method is
probably not the most efficient one, but the objective was to examine the
validity domain of QGD equations rather than optimizing their numerical
solution. Both NS and QGD calculations assumed the gas to be perfect
and accounted for velocity slip and temperature jump at the wall [1], [3].
DSMC calculations were carried out using a code developed at the Labora-
toire d’Aérothermique du CNRS based on the ideas of Bird [2] and briefly
described in [5].
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The results are presented in dimeunsionless form based on freestream
values. Lengths are reduced by the freestream mean free path. Due to
space limitations, results are presented only for Al = 2 and A = 10. Other
results confirm the present conclusions. -

The wall pressure distribution for T, = Ty, and T, = T, has been
plotted in Figs.1-2. These figures exhibit two curves obtained fromm DSMC
calculations, namely the thermodynamic pressure of the gas along the wall,
as resulted from the equation of state p = nkT, and the normal stress F,
due to the exchange of normal momentum between the gas and the wall. In
the continuum approaches these two concepts coincide whereas they differ
strongly in DSMC results. The distribution of skin-friction coefficient has
been plotted in Figs.3-4. Density profiles obtained at reduced abscissas
equal to 10, 40 and 80 are presented in Figs.5-6.

4 Discussion and Conclusions

Numerical results show that for small Knudsen numbers (i.e. large abscis-
sas) NS and QGD models give the same results. This is consistent with
the fact that NS equations are the asymptotic limit of QGD equations for
Kn — 0 [9]. This is also the confirmation of the validity of BC used in the
present QGD calculations.

For small Mach numbers both continuum models come rapidly to close
agreement with DSMC. However the region near the trailing edge is affected
by the differences in formulating the downstream boundary conditions. As
M increases, discrepancies appear near the leading edge of the plate. Both
these discrepancies and the extent of the region where they appear increase
with increasing M. QGD results are generally closer to DSMC than NS
ones. This is due to additional dissipation in QGD model. The ratio of
additional terms in QGD to the NS one in the right-hand side of Eq.2.2 is
proportional to A2, So the difference between QG D and NS increases with
M. Thus QGD equations can be considered as an improvement, compared
with the usual NS equations in the domain of large Af in slip-flow regimes.

However both continuum models depart from DSMC at abscissas 2 that
correspond to values of M//Re, ranging from = 0.5 (T, = Two) to = 1
(Tw = To). This parameter that can be interpreted as a Knudsen nuraber
based on the boundary layer thickness Nns = AL, /é appears to be a basis
for an approximate validity criterion for continuum approaches. A more
complete presentation of the present work (including details on equations
and additional numerical results) can be found in {13).

It results from the present work that

.

o QGD equations can be considered as a model for the description
of viscous gas flows. Under some conditions QGD equations bring
significant improvement compared with NS ones. Otherwise QGD
and NS results tend to collapse.
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o For small values of M, continuum models are valid except in the
immediate vicinity of the leading edge. More generally a criterion
can be proposed for the validity of the continuum approach.
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Figure 4. Distribution of skin-friction coefficient, M =10




M2, Tw=TQ

100

80}

60}

40|

20}

T.G. Elizarova, I.A. Graur 7

Figure 5. Deusity profiles, A/ =2
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