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1 Introduction

The aim of this paper is a new presentation and a generalization of the so-
called quasigasdynamic (QGD) moment equations that were obtained nearly
fifteen years ago (e.g. [1]) and were used as an alternative to Navier-Stokes
(NS) equations. It will be shown that the distribution functions associated
with QGD equations are as realistic as those associated with NS equations.
The formalism used to derive QGD equations will be generalized to include
translational or rotational nonequilibrium.

The classical way to obtain NS equations consists in retaining the first
order terms in a series expansion of the distribution function. The form of
this approximation (function f™%) is obtained as a result of the Chapman-
Enskog procedure. The formal change f — fV° in the convective term of
Boltzmann equation (BE) results in the approximation

of

X NS _
S T EN =1,

and finally in the NS equation system after multiplication by collisional
invariants and averaging over velocity space.

In place of fV9 the authors propose to use other variants of series expan-
sions. The first variant of such an expansion allows to derive QGD equations
that describe viscous continuum flows. Increasing the Knudsen number re-
sults first in a violation of translational and rotational equilibrium. The
other variants presented below are generalizations of the QGD gradient ex-
pansion (QGDT and QGDR expansions) that allow to derive moment equa-
tions that describe flows with translational and rotational nonequilibrium,
respectively.
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2 QGD gradient expansion

The first variant (QGD gradient expansion) is, e.g., [1]

FOEL = fo — 7(€V) fo,

where fy is the local Maxwellian distribution function, 7 is the Maxwellian
relaxation time 7 = u/p, p is the usual viscosity and p is the pressure.
7 is close to the mean collisional time. A physical interpretation of this
expansion can be found, e.g. in [2]. The formal change f — %" in the
convective term of BE results in

o @)~ ErE =T

Averaging this approximation after multiplication by collisional invariants
(and introducing Prandtl number Pr and specific heat ratio v for generaliza-
tion purpose) results in a system of moment equations that describes viscous
and heat conductive flows, namely quasigasdynamic (QGD) equations:

9 , . .
57 +Vipu' = V7 (Vjpu'v) +V'p),
0 , o
apuk + Vipulu® +VFp = V7 (Vpuluiu® +
Viput + V¥ pul) + V¥ 1 V;pul,
0 ; VR R
EE +Viu' (E+p) = ViT(V;(E+2pu'e’ + §V’uku’”p) +

Y v, Evipr pr L v, rpvil,
-1 P y—1 P

where E = (pii?)/2 + p/(y —1),p = pRT. Here and below usual notations
are used. For stationary flows, QGD equations turn into NS ones, with an
additional contribution of order O(7?) and with the simple approximation
of the second viscosity coefficient ¢ in the form [2] ¢y = p(5/3 — 7). The
QGD system was used successfully to describe viscous gas flows, including
rarefied ones and presented some advantages compared with NS one (e.g.
[4]). In [3] QGD equations have been obtained from a continuum mechan-
ics approach, where their relation with the classical gasdynamic models is
established. QGD equations can be derived also as a differential approach
to kinetical-consistent difference schemes based on space-constant approxi-
mation of distribution function [5].

QGD and NS distribution functions. When differentiating function fy
(in cartesian coordinates) with respect to z;, f@9P writes

FREP = fo(1+ 1PEP (&),
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where ’P??GD is a polynomial of degree 3 in ;. Similarly, accounting for
u = p/T, the NS distribution function writes

Y= fo(L+ 7P (&),

Thus both NS and QGD distribution functions can be written as a series
expansion in 7. In the particular case v = 5/3, Pr = 1, the coefficients for
the terms containing & are identical. Most other coefficients are identical
except for the numerical factors. Thus the functions fVS and f@%P have
the same asymptotic behavior along the axes for large values of ¢; [2].

3 QGDT and QGDR gradient expansions

QGDT equations. Another gradient expansion (QGDT) allows to gener-
alize QGD equations to flows of monoatomic gas with translational nonequi-
librium, i.e., with anisotropy of the distribution function. Details are given
in [2]. We use the approximation

f = fROPT where fROPT = f, — 7(V)f.

and fo = foz X foy X fo- is an ellipsoidal distribution function, built as
a product of Maxwellian distribution functions with different translational
temperatures T; in the different directions of a cartesian system. Now the
approximation of BE is

of o a
o T EV)fe — (EV)T(EV)fe = 1.

This equation is multiplied successively by 1, 5”, €2 /2 and averaged over the
velocity space to yield the QGDT equations. Components of pressure and
total energy, connected with the three space coordinates are calculated as
pi = pRT;, E; = (pu? + p;)/2. The QGDT equation system is obtained as

0
6—5 +Vipu; = ViTVj(p’LLi U +Pij);
0p ug
B + Vi(puiuk + sz) = ViTVj(puin U + U; ij + Uj P + uy, Pij):
0
aEa + vi(Eaui +paua6ia) =
u2

Vit Vj(Battiuj + tapa(u;dia + widja) + 5 Pyj) +

Pi' (% PZ
PT‘71Vi7—( 2] + 6ia6japa)ijTa + VZT%V]( 2.7 + 6ia6joépoz) + Sa.
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Here E, and p, are scalar quantities. Subscripts ¢, j, k, a refer to any of
the space directions z,y,z and V; denotes the i-component of gradients.
Summation occurs for repeated i and j subscripts and

p. 0 O
0 0 p.

As for QGD equations, the Prandtl number does not appear in the de-
scribed treatment and is introduced artificially. Because the &2 are not
collisional invariants, exchange terms S, appear in the equations that gov-
ern the evolution of energy in the different directions. They are calculated
based on a relaxation model for the collision integral and they are found to
be S; = (p—pi)/(27re1), where p is the average pressure p = (p, +py +p-)/3.
In the present work, 7. is taken as the mean collisional time 7, [6].
Application to shock wave structure. The QGDT system has been
applied to the classical problem of shock wave structure. A DSMC calcu-
lation has been carried out on the same problem to serve as a reference,
using the code DISIRAF developed at the Laboratoire d’Aérothermique.
Details are given in [2]. The only difference between the present work and
that presented in [2] is the expression of 7,,; which is now taken equal to
T. rather than 7 = u/p. This change improved significantly the agreement
between DSMC and QGDT results. The test-case presented here is that of
a shock wave at Mach number Ma = 10 in a monoatomic hard-sphere gas
(w = 0.5). Results obtained at smaller Mach numbers exhibit even better
agreement with DSMC ones.

The profiles of density and velocity are given in Fig.1, as obtained by solving
NS, QGD and QGDT equations. They are compared with those obtained
by DSMC calculations. Abscissae are reduced by the upstream mean free
path and ordinates are presented in the usual form based on upstream (1)
and downstream (2) Rankine-Hugoniot values. The origin of abscissae is
the point where the reduced density is equal to 1/2, the computational grid
step h = 0.25);.

QGD profiles present comparable or better agreement than NS ones, when
compared with DSMC results. The introduction of translational nonequi-
librium (QGDT) improves considerably the agreement of p and u profiles.
Profiles of transverse and longitudinal temperatures (T, and T}, respec-
tively) are presented in Fig.2 as obtained from QGDT equations and DSMC
method. The qualitative features of the profiles are found, including the
overshoot of T,,. However, quantitative agreement is not achieved.

The inverse reduced shock wave thickness A;/é is plotted against Mach
number in Fig.3. While QGD results differ little from NS ones, introduc-
ing translational nonequilibrium (QGDT equations) shifts the results much
closer to DSMC ones.

122



Marseille, France, July 26-31, 1998

For NS equations, the conductive heat transfer within a gas is equal to

_or
" or

where k is the thermal conductivity. For QGD equations, it was established
[3] that

QNS:

aD 01 0s
Q el 272
Q = —K TpTu ,

where s is the entropy. In DSMC calculations, it is obtained by sampling
as

QUM = plex (G + G +2)/2).

The distribution of heat flux is presented in Fig.4, non-dimensionalized by
p1 a3. The agreement of QGD and QGDT results with DSMC ones is con-
siderably better than the agreement between NS and DSMC results.

Distribution function. When differentiating function f. with respect to
zi, fREPT writes as

FOPT = .1+ rPFPT ().

The coefficients ahead of &2, €2, ¢1 and &2 are

a = " R a = — — + ,
wwe 2RT? Ox o RT, 0z RT? Ox
2
% = Rh o 2, 0r T RL) VY om, 0x YO 8r T pows
a® = 0.

The distribution functions associated with NS, QGD and QGDT models
were compared with the distribution function obtained by sampling during
the DSMC calculation. The results at abscissae x/A; = —1 and 0 are shown
in Figs.5 and 6, respectively. The distribution functions are plotted against
&, after integration over £, and ¢, velocities.

The distribution functions are very sensitive to the models used. NS dis-
tribution functions exhibit unrealistic negative values, while QGDT distri-
bution functions appear to be closer to DSMC results. This comparison
confirms that QGD and QGDT equations are associated with a reasonable
approximation of the actual distribution function.

QGDR gradient expansion. To model rarefied flows with nonequilibrium
between translational and rotational temperatures, a QGDR approximation
for the distribution function was used

fQGDR = fOr - T(gv)fOM
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where fo, = fo X fr, and f, is the Hinshelwood distribution function for
rotational energy in di- or polyatomic molecules [6]. The formal change
f — fREPE regults in an approximation for BE

of

ot
that results finally in QGDR moment equations for a gas with 2 or 3 rota-
tional degrees of freedom. This system is described and used in a companion
paper [7]. In the equilibrium case, the QGDR system turns into the QGD
system with the corresponding 7 value.

+(EV) for — (ENT(EV) for =T

The formalism used to derived QGD equations is currently being generalized
to obtain a system of equations for gas mixtures.

Limits of the continuum approach. To illustrate the limits of the ap-
proaches presented above, a 2-D jet expansion from a slit of height d in
direction y was calculated. The flow conditions were the same as for the
DSMC calculation presented in [8]: exit Mach and Knudsen numbers equal
to 2 and 0.1, respectively. The gas consists again in monoatomic hard-sphere
molecules. The evolution of density, velocity and average temperature ob-
tained by QGDT equations are consistent with DSMC ones close to the slit,
i.e. where molecular collisions are sufficient to maintain a situation close
to equilibrium (Fig.7). Unfortunately the evolution of direction-dependent
temperatures obtained by DSMC was not available for these flow condi-
tions. However, the results obtained from QGDT equations (Fig.8) are in
qualitative agreement with those obtained for other flow conditions.

4 Conclusion

Approximations of the distribution function in the form of gradient expan-
sions allow to derive moment equations that are consistent with Navier-
Stokes equations in the limit Kn — 0.

These equations can be generalized to describe flows with translational
(QGDT) or rotational (QGDR) nonequilibrium.

The comparison of distribution functions confirms that these expansions
are associated with reasonable approximations of the actual distribution
function.

When applied to the problem of shock wave structure, QGDT profiles of flow
parameters are in better agreement with DSMC ones than those obtained
by NS or QGD equations.

Thus the family of equation systems described in the present paper can be
regarded as an valuable alternative to the classical NS equation system.
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Figure 1: p and u profiles Figure 2: Profiles of temperatures

125



21st International Symposium on Rarefied Gas Dynamics

-500

-1000 |

-1500

-2000 |-

-2500

[ — QGDT

X/\

Figure 3: Inverse shock wave thick- Figure 4: Profiles of conductive heat
transfer in a shock wave
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Figure 5: Distribution function in
a shock wave at ¢ = — )\
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Figure 7: Evolution of flow pa-
rameter in a 2D jet expansion
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Figure 6: Distribution function in
a shock wave at © =0

Figure 8: Evolution of direction-
dependent temperatures in a 2D
jet expansion



