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Abstract

 

—The results obtained by the authors in developing new efficient mathematical models, sys-
tems of quasi-gasdynamic and quasi-hydrodynamic equations, are presented in a systematic form.
A phenomenological interpretation of these systems is discussed, and their relation to the Navier–Stokes
equations is investigated. The results of numerical simulations of some compressible and incompressible
flows are compared with those based on other mathematical models.

 

1. INTRODUCTION

In [1–4], efficient algorithms were proposed for the mathematical modeling of gasdynamic flows. In
those studies, kinetically consistent finite-difference schemes (KCFDS) and closely related quasi-gasdy-
namic equations were constructed. Quasi-gasdynamic equations differ from Navier–Stokes equations by
their additional terms written in conservative form with a small parameter as a coefficient. In numerical sim-
ulations of viscous flows, these additional terms behave as efficient regularizers.

In this paper, we systematically expand on our theoretical and numerical results obtained by examining
and applying the systems of quasi-gasdynamic (QGD) and quasi-hydrodynamic (QHD) equations in numer-
ical experiments. We propose a phenomenological interpretation demonstrating that these schemes are con-
sistent with basic conservation laws, analyze their relation to Navier–Stokes equations, and construct a
QHD model for a viscous incompressible fluid. The results of numerical simulations of gas and fluid flows
based on QHD and QGD equations are compared with analogous results obtained by applying other
approaches.

The first of the QHD systems, the quasi-gasdynamic system, was derived in [2–4] from the well-known
model of a free-molecular gas outflow followed by instant maxwellization. This approach was also used in
[5–7] to develop numerical methods for problems in gas dynamics. The second, QHD system was intro-
duced in [8]. A phenomenological interpretation of these systems and their representation in the form of
integral conservation laws were proposed in [9]. In [8–11], entropy balance equations were obtained for
both systems, properties of their solutions having the form of stationary shock waves were examined, and
laminar boundary-layer approximations equivalent to the Prandtl equations were constructed. It was shown
that time-independent QHD and QGD systems differ form Navier–Stokes equations by the additional con-
servative terms of the second order with respect to the Knudsen number. In [8, 9, 12], the Boussinesq
approximation was constructed, a procedure of transition to mass Lagrangian coordinates was substanti-
ated, and some exact solutions were found for the quasi-hydrodynamic equations. A version of the second
QHD system designed for numerical simulation of the isothermal viscous incompressible flows a fluid was
originally proposed in [13]. For this version, a theorem on the dissipation of the total kinetic energy in
bounded domains was also proved, and exact solutions were constructed that are equivalent to the corre-
sponding solutions to the Navier–Stokes equations. These solutions describe laminar pipe and plane Poi-
seuille flows and the Couette flows between coaxial cylinders rotating at constant angular velocities. Algo-
rithms constructed based on the QHD and QGD equations were successfully used in numerical simulations
of gas [14, 15] and fluid [16–18] flows.

The quasi-gasdynamic system was introduced in the context of an analysis of the differential approxi-
mations of KCFDS. The results of numerical studies of gasdynamic flows based on these schemes were pre-
sented in [19]. Note also that the QHD and QGD systems differ from the other systems similar in structure
proposed in [20–23].
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2. PHENOMENOLOGICAL INTERPRETATION 
OF QUASI-HYDRODYNAMIC EQUATIONS

In this section, we discuss a phenomenological interpretation of the QHD system of equations originally
published in [8] and check the fulfillment of basic conservation laws for this system. To this end, we follow
the phenomenological derivation of the classical Navier–Stokes system [24, 25] that describes compressible
viscous heat-conducting flows. The derivation is based on the postulates that express integral conservation
laws for mass, momentum, angular momentum, total energy, and entropy for a moving material volume.

We define an inertial Cartesian coordinate system 
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in the Euclidean space 
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3
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orthonormal basis (
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) and denote time by 
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. We use the following notation for macroscopic flow vari-
ables: 
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is density, 
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is velocity, 
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is pressure, 
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is the specific internal
energy, 
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is temperature, and 
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is the specific entropy. We assume that only two of the five
thermodynamic variables 

 

ρ

 

, 

 

p

 

, 

 

ε

 

, 

 

T

 

, and 

 

s

 

 are independent. Three equations of state are given:

 

(2.1)

 

By 

 

F

 

, we denote the body force per unit mass. For example, 

 

F

 

 = 

 

g

 

 for a fluid in the gravitational field, where

 

g

 

 is the acceleration of gravity.
The first postulate is the mass conservation law written in the form

 

(2.2)
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 called the mass flux is defined at each point 

 

x

 

 of the flow domain at
each moment 

 

t

 

. We do not specify its form at this point.
In the flow domain, we single out a moving material volume 
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 bounded by a smooth surface 
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, which is oriented by a field of outward unit normal vectors 
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. We suppose that the volume 
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evolves
from a volume 
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, where 

 

t

 

0

 

 is an initial moment, through the continuous deformation induced by the
movement of particles from 

 

V

 

0

 

 along the trajectories determined by the vector field 

 

j

 

m

 

/

 

ρ

 

. Using the well-
known Liouville theorem on the derivative of an integral over a moving material volume [24], we represent
the mass conservation law (2.2) as

 

(2.3)

 

The momentum conservation law is the second postulate:

 

(2.4)

 

The rate of momentum variation in the volume 

 

V 

 

equals the sum of forces applied to this volume. The first
integral on the right-hand side of (2.4) is the body force induced by the external field, and the second integral
determines the pressure and internal viscous friction forces applied to the surface 

 

Σ

 

. The quantity 

 

P

 

 = 

 

P
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x
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is the internal stress tensor. By (

 

n

 

 

 

·

 

 

 

P

 

), we denote a convolution (inner product) of the vector 

 

n

 

 and the sec-
ond-rank tensor 

 

P

 

 performed with respect to the first index of 

 

P.

 

 Accordingly, (

 

P

 

 

 

·

 

 

 

n

 

) is the convolution of

 

P

 

 and 

 

n

 

 with respect to the second index of 

 

P

 

. In the case of a symmetric tensor P, (n · P) = (P · n). The total
energy conservation law is the third postulate:

(2.5)

Hereinafter, the square of an arbitrary vector is defined as a2 = (a · a) = |a |2.
The first integral on the right-hand side of (2.5) is equal to the power of the external mass forces applied

to the volume V, and the second integral is interpreted as the power of the surface pressure forces and inter-
nal viscous friction. The last term in (2.5) describes the energy flux across the surface Σ due to heat conduc-
tion. We write out the expressions for the vector fields A = A(x, t) and q = q(x, t) in what follows.

The next postulate expresses the conservation of angular momentum:

(2.6)

p Ψ1 ρ T,( ), ε Ψ2 ρ T,( ), s Ψ3 ρ T,( ).= = =

∂ρ/∂t div jm+ 0.=

td
d ρ Vd

V

∫ 0.=

td
d ρu( ) Vd

V

∫ ρF Vd

V

∫ n P⋅( ) Σ.d

Σ
∫∫+=

td
d ρ u2

2
----- ε+ 

  Vd
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∫ jm F⋅( ) Vd

V

∫ A n⋅( ) Σd

Σ
∫∫ q n⋅( ) Σ.d

Σ
∫∫–+=

td
d x ρu( )×[ ] Vd
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∫ x ρF×[ ] Vd
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∫ x n P⋅( )×[ ] Σ .d

Σ
∫∫+=
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It is represented in the classical form [24]. Internal torques and couples distributed over the volume and the
surface are not taken into account.

The second law of thermodynamics serves as the fifth postulate:

(2.7)

The surface integral on the right-hand side of (2.7) is the rate of entropy variation in the volume V due to
heat flux. It can be either positive or negative. The last integral in (2.7) is strictly nonnegative and describes
the rate of entropy production due to internal irreversible processes.

The specific entropy s is defined by the well-known differential Gibbs identity

(2.8)

Again, to pass from integral relations (2.3)–(2.7) to corresponding differential equations, we use Liouville’s
volume theorem. We assume, in so doing, that all basic macroscopic variables are sufficiently smooth func-
tions of coordinates and time. Since it was mentioned above that the motion of V is determined by the vector
field jm/ρ, the Liouville theorem takes the form

(2.9)

Here, ϕ = ϕ(x, t) is a continuously differentiable scalar or vector field, and D = ∂/∂t + (jm/ρ) · — is a differ-
ential operator.

Applying formula (2.9) to (2.3)–(2.7) and taking into account the arbitrariness of V, we obtain differen-
tial balance equations for mass,

(2.10)

momentum,

(2.11)

total energy,

(2.12)

angular momentum,

(2.13)

and entropy,

(2.14)

Here, (jm ⊗  u) is the second-rank tensor obtained as the direct product of jm and u. To calculate the diver-
gence of a second-rank tensor, the convolution is performed with respect to its first index. In Eq. (2.13), the
symbol Pij denotes the components of P in the basis (e1, e2, e3), and summation is performed over the
repeated indices i and j.

System (2.10)–(2.14) is not closed. The closure problem can be solved in different ways. To this end, the
quantities jm , P, A, q, and X must be represented as functions of macroscopic flow variables and their deriv-
atives.

The following expressions for these quantities correspond to the Navier–Stokes equations:

(2.15)

(2.16)

(2.17)

(2.18)

td
d ρs( ) Vd

V

∫ q n⋅( )
T

--------------- Σd

Σ
∫∫ X V .d

V

∫+–=

Tds dε pd 1/ρ( ).+=

td
d ϕ Vd

V

∫ Dϕ ϕ div jm/ρ( )+[ ] V .d

V

∫=

∂ρ/∂t div jm+ 0;=

∂ ρu( )/∂t div jm u⊗( )+ ρF divP;+=

t∂
∂ ρ u2

2
----- ε+ 

  div jm
u2

2
----- ε+ 

 + jm F⋅( ) divA divq;–+=

t∂
∂ x ρu×[ ] div jm x u×[ ]⊗( )+ x ρF×[ ]

xi∂
∂ x Pije j×[ ] ;+=

∂ ρs( )/∂t div jms( )+ div q/T( ) X .+–=

jm ρu,=

P Π pI ,–=

A Π u⋅( ) pu,–=

q κ—T ,–=



222

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 41     No. 2      2001

 ELIZAROVA, SHERETOV

(2.19)

In formulas (2.15)–(2.19), I denotes the unit tensor,

(2.20)

is the Navier–Stokes viscous stress tensor, and (Π : Π) = ΠijΠij is a double inner product. The positive
absolute viscosity η and heat conductivity κ are assumed to be given functions of density and temperature.
In (2.20), the term corresponding to bulk viscosity is disregarded.

Formulas (2.15)–(2.19) can be used to show that the entropy balance equation (2.14) follows from
Eqs. (2.10)–(2.12). Note that, for a moderately rarefied monatomic gas, expressions (2.18) and (2.20) can
be derived from the Boltzmann kinetic equation by the Chapman–Enskog and Grad methods in the first
approximation by expanding, in terms of the Knudsen small parameter [26, 27].

In the Navier–Stokes theory, density, velocity, and temperature are defined by averaging over a set of
physically infinitesimal volumes in R

3
 at a fixed moment t. In changing from one inertial coordinate system

to another, an instantaneous spatial average is transformed according to a certain law. Identity (2.15) can be
proved for instantaneous spatial averages (see [27]).

Let us assume an alternative definition of gas flow variables that differs from the classical one and relies
on a spatiotemporal averaging rather than on a spatial one. Such a procedure of smoothing over a set of
physically infinitesimal four-dimensional parallelepipeds in the phase space R

3
 × Rt was described in detail

in [12]. In this procedure, the choice of jm , P, A, q, and X is not limited to the classical expressions (2.15)–
(2.19) under the assumption that jm is not equal to ρu.

If we disregard the requirements (2.15)–(2.19), then the combined system of equations and variables
generally loses its original physical meaning. However, it admits formal closures of at least two types. Since
the starting postulates (2.10)–(2.14) hold as basic conservation laws, we preserve the corresponding nota-
tion for all variables in the equations. General considerations suggest that spatiotemporal and spatial aver-
ages are close for weakly nonequilibrium flows, differing by quantities containing a small parameter that
plays the role of a regularizer in a numerical computation.

One closure of system (2.10)–(2.14) corresponding to the QGD system of equations is presented in the
next section. Another closure, which leads to the QHD system, was discussed in detail in [9]. For QHD
equations, the expressions analogous to (2.15)–(2.19) have the form

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

In (2.21)–(2.15), w is the vector defined as

(2.26)

and Π is the Navier–Stokes viscous stress tensor. As in the classical case, when P is defined by (2.22), the
angular momentum equation (2.13) is a Corollary of the momentum conservation law (2.11). The entropy
balance equation is also derived by combining the Gibbs identity (2.8) with the mass, momentum, and
energy conservation laws.

In (2.26), the positive parameter τ, having the dimension of time, is assumed to be a prescribed function
of density and temperature. To compute τ, the formula

X κ —T
T

-------- 
 

2 Π  : Π( )
2ηT

-------------------.+=

Π η — u⊗( ) — u⊗( )Ú 2/3( )Idivu–+[ ]=

Σi j, 1=
3

jm ρ u w–( ),=

P Π pI– ρu w⊗+ ΠQ pI ,–= =

A Π u⋅( ) p u w–( )– ρu w u⋅( ),+=

q κ—T ,–=

X κ —T
T

-------- 
 

2 Π  : Π( )
2ηT

-------------------
ρw2

τT
----------.+ +=

w
τ
ρ
--- ρ u —⋅( )u — p ρF–+[ ] ,=

τ γ
Sc
------ ν

cs
2

----=
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was proposed in [9], where ν = η/ρ is the kinematic viscosity, γ is the ratio of specific heat, cs is the sonic
velocity, and Sc = η/(ρD) is the Schmidt number. The fluid self-diffusion coefficient D can be measured

experimentally. For gases, the Schmidt number is close to unity. By virtue of Laplace’s formula  = γp/ρ,
the expression for τ can be transformed into τ = η/(pSc). Thus, τ is close in the order of magnitude to the
mean free path of atoms in a gas.

Substituting (2.21)–(2.25) into (2.10)–(2.14), we arrive at the system of QHD equations

(2.27)

(2.28)

(2.29)

System (2.27)–(2.29) becomes closed if it is supplemented by analogues of the equations of state (2.1) and
by expressions for the coefficients

(2.30)

We represent the entropy balance equation (2.14) as

(2.31)

where

(2.32)

is a nonnegative dissipation function. It can be included into the system instead of the energy equation.
As τ  0, the additional terms in (2.21)–(2.23), (2.25) (i.e., those containing the vector w) tend to zero;

expressions (2.21)–(2.25) reduce to (2.15)–(2.19); and the system of QHD equations (2.27)–(2.29), includ-
ing the equations of state, becomes the classical system of Navier–Stokes equations. General considerations
naturally suggest that, in this limit, the spatiotemporal averages behave as follows: ρ  ρNS , u  uNS,
and T  TNS , where classical instantaneous spatial averages—density, velocity, and temperature—are
denoted by ρNS, uNS, and TNS, respectively.

Formulation of boundary conditions for the proposed equations is a complicated task connected to the
existence, uniqueness, stability and physical adequacy of their solutions. Therefore, this task should be con-
sidered separately for each particular problem. The system of differential equations (2.27)–(2.29) is of a
higher order, as compared to the Navier–Stokes system, due to the terms containing second-order partial
derivatives of pressure with respect to spatial coordinates. Therefore, the number of boundary conditions
for the QHD equations must be larger than in the classical case. Consider a fluid motion in a closed, adia-
batically insulated volume V0 bounded by a stationary smooth surface Σ0 oriented by a field of outward unit
normal vectors n. The following boundary conditions can be set on the boundary Σ0:

(2.33)

The first condition in (2.33) is the no-slip condition on the walls of a vessel, the second condition combined
with the first one ensures the absence of mass flux across the boundary, and the third condition implies that
the normal component of the heat flux q vanishes on Σ0 . Integrating Eq. (2.31) over V0 and using boundary
conditions (2.33) and the fact that the dissipation function (2.32) is nonnegative, we find that the total ther-

modynamic entropy of the fluid, S = , cannot decrease in the volume in question. The Navier–

Stokes system possesses a similar property [28]. Joule’s principle of equivalence of mechanical work and
heat for an adiabatically insulated volume with moving rigid walls can be obtained as a direct consequence
of the QHD equations. The well-known barometric formula is also a consequence of system (2.27)–(2.29).

cs
2

∂ρ/∂t div ρu( )+ div ρw( ),=

∂ ρu/∂t( ) div ρu u⊗( ) — p+ + ρF divΠ div ρw u⊗( ) ρu w⊗( )+[ ] ,+ +=

t∂
∂ ρ u2

2
----- ε+ 

  div ρu u2

2
----- ε+ 

  pu+ divq+ +

=  ρF u w–( ) div Π u⋅( ) div ρw u2

2
----- ε+ 

  pw ρu w u⋅( )+ + .+ +⋅

η Ψ4 ρ T,( ), κ Ψ5 ρ T,( ), τ Ψ6 ρ T,( ).= = =

∂ ρs( )
∂t

-------------- div ρus( )+ div ρws( ) div κ —T
T

-------- 
  κ —T

T
-------- 

 
2

Φ
T
----,+ + +=

Φ Π  : Π( )
2η

------------------- ρw2

τ
----------+=

u Σ0
0, w n⋅( ) Σ0

0, ∂T /∂n Σ0
0.= = =

ρs( ) xd
V0∫
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It is shown in [8] that classical Prandtl equations [25] provide the laminar boundary-layer approximation
of the QHD equations. In the case of steady flows, the divergence terms in the QHD equations formally
behave as O(τ2) quantities as τ  0. However, these terms are on the order of O(τ) for unsteady flows, and
their influence may be significant.

Finally, we note that small divergence terms that distinguish the QHD equations from the Navier–Stokes
equations play the role of regularizers ensuring the efficiency of finite-difference algorithms, which is ver-
ified by numerous computations of complex gas and fluid flows.

3. SYSTEM OF QUASI-GASDYNAMIC EQUATIONS

This system was derived in [2, 4] in the form

(3.1)

(3.2)

(3.3)

The system is closed by the equations of state for a perfect polytropic gas

(3.4)

where R is the gas constant, and cv is the specific heat at a constant volume.

When deriving (3.1)–(3.3), the authors used the well-known phenomenological model of free-molecular
gas flow followed by instant maxwellization, which was employed in several studies to construct numerical
methods in fluid dynamics [1–7].

The QGD equations can be derived as moment equations by averaging the products of the summation
invariants 1, v, and v2/2 with a model kinetic equation of the form [29]

(3.5)

where f = f(x, v, t) is a one-particle distribution function, and f (0) is a locally equilibrium Maxwellian func-
tion with macroscopic parameters determined by the function f. The parameter τ on the right-hand side of
(3.5) is interpreted as the characteristic time of molecular relaxation to the locally equilibrium distribution
and is close in the order of magnitude to the mean free path of molecules in a gas. The macroscopic param-
eters in the formula for τ are also quadratures of f.

It was shown in [9] that, when the external force F is negligible, Eqs. (3.1)–(3.3) for a polytropic perfect
monatomic (γ = 5/3) gas can be derived from integral conservation laws (2.3)–(2.7) and represented in the
form (2.10)–(2.12) with the following expressions for jm, P, A, q, and X:

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

∂ρ/∂t div ρu( )+ divτ div ρu u⊗( ) — p+[ ] ,=

∂ ρu( )/∂t div ρu u⊗( ) — p+ +

=  divτ div ρu u u⊗ ⊗( ) — pu⊗( ) — pu⊗( )Ú+ +[ ] —τ div ρu( )[ ] ,+

t∂
∂ ρ u2

2
----- ε+ 

  div ρu u2

2
----- ε+ 

  pu++

=  divτ div ρ u2

2
----- ε 2

p
ρ
---+ + 

  u u⊗ — p
u2

2
----- ε p

ρ
---+ + 

 +
 
 
 

.

p ρRT , ε cv T ,= =

∂f
∂t
----- v —⋅( ) f 0( )+ v —⋅( )τ v —⋅( ) f 0( ) f 0( ) f–

τ
-----------------,+=

jm ρ u w–( ),=

P Π pI τu ρ u —⋅( )u — p+[ ] τ I u —⋅( )p γpdivu+[ ] ,+⊗+–=

A Π u⋅( ) p u w–( ) τu ρ u —⋅( )
u2

2
----- 

  u —⋅( )p+ τu u —⋅( ) p γpdivu+[ ] ,+ +–=

q κ—T τρTu u —⋅( )s,––=

X κ —T
T

-------- 
 

2 Π  : Π( )
2ηT( )

-------------------
pτ

ρ2T
--------- div ρu( )[ ] 2 τ

ρT
------- ρ u —⋅( )u — p+[ ] 2 τ

ρεT
---------- ρ u —⋅( )ε pdivu+[ ] 2,+ + + +=
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where

(3.11)

and the absolute viscosity η and heat conductivity κ are calculated as η = pτ and κ = cppτ, respectively. Note
that these are the values of η and κ obtained when the Navier–Stokes system is derived from the well-known
Bhatnager–Gross–Krook kinetic equation [26].

System (3.1)–(3.3) can be formally generalized to describe a polyatomic gas and also to the case of an
arbitrary Prandtl number. To do this, one must use the true value of γ in expressions (3.6)–(3.11) and define
the coefficients η and κ as η = pτ and κ = cppτ/Pr, respectively. In (2.20), the terms corresponding to the
bulk viscosity must also be taken into account.

By using (3.6)–(3.11), it can be shown that the momentum conservation law follows from the momen-
tum balance equation. The entropy balance equation can also be derived from system (3.1)–(3.3) (see [9]).
Note that this derivation fundamentally relies on the assumption that the gas is perfect and polytropic.

The time-independent quasi-gasdynamic equations differ from the corresponding Navier–Stokes equa-
tions by additional divergence terms that formally are O(τ2) as τ  0 or, in a dimensionless form, O(Kn2)
as Kn  0 (see [10]). For this QGD system, the classical Prandtl system of equations serves as a laminar
boundary-layer approximation. For Eqs. (3.1)–(3.3), the properties of stationary shock-wave solutions were
analyzed in [11]. In the limit case of κ = 0 and η ≠ 0, it was proved that entropy strictly increases across a
shock wave with a positive derivative.

4. QHD MODEL OF VISCOUS INCOMPRESSIBLE FLOWS

In models of convective fluid flows in uniform gravitational fields, the simplified form of the Navier–
Stokes system proposed by Boussinesq is widely used [28, 30]. The corresponding approximation of the
QHD equations was derived in [9] in the form

(4.1)

(4.2)

(4.3)

Here, the vector w is defined by the expression

The following standard notation is used in (4.1)–(4.3): ρ = const > 0 is the average density, u = u(x, t) is the
fluid velocity, p = p(x, t) is the hydrodynamic pressure, and T = T(x, t) is the temperature deviation from its
mean value T0 = const > 0. The quantity ρu is interpreted as the spatiotemporal mean momentum per unit
volume of a fluid. Here, vector g is the acceleration of gravity, Π = η[(— ⊗  u) + (— ⊗  u)Ú] is the Navier–
Stokes viscous stress tensor in the case of an incompressible fluid. In Eqs. (4.1)–(4.3), the thermal expansion
coefficient β, thermal diffusivity χ, absolute viscosity coefficient η, and parameter τ are positive constants.
A term containing the dissipation function is omitted in (4.3).

As τ  0, system (4.1)–(4.3) becomes the classical Boussinesq system used in models of thermal con-
vection. Exact solutions to Eqs. (4.1)–(4.3) that describe convection in plane vertical and plane horizontal
layers were obtained in [9, 12].

In [13], a variant of system (4.1)–(4.3) describing an isothermal viscous flow was originally postulated,
and the corresponding balance equation for kinetic energy was derived in the form

(4.4)

The nonnegative dissipation function Φ is calculated as

w
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Integrating (4.4) over a bounded domain V0 and using the boundary conditions

one finds that the total kinetic energy E =  decreases with time elapsed. The analogous theo-

rem on kinetic energy dissipation is true for the Navier–Stokes system [28].
Exact solutions to this system describing the well-known laminar pipe and plane channel Poiseuille

flows and the Couette flows between two planes and two coaxial cylinders rotating at constant angular
velocities were constructed in [13].

It was shown in [12, 31] that quasi-magnetohydrodynamic (QMHD) models can be constructed for flows
of viscous electrically conducting media (both compressible and incompressible) by combining the quasi-
hydrodynamic equations with the Maxwell equations. Exact solutions to the QMHD systems were obtained
for analogues of the Hartmann and Gershuni–Zhukhovitskii problems.

5. MODELS OF VISCOUS COMPRESSIBLE GAS FLOWS BASED 
ON THE QUASI-GASDYNAMIC EQUATIONS

Numerical analysis of supersonic gas flows based on the Navier–Stokes system presents certain difficul-
ties. One of them is associated with the construction of special grid regularizers ensuring that a finite-dif-
ference solution is adequate, and computations are stable. For quasi-gasdynamic equations, this problem
can be solved in a simple and efficient way. The regularizers are constructed on the basis of the additional
divergence terms and allow the use of the second-order accurate approximations of all derivatives in spatial
variables.

For plane or axially symmetric flows, the quasi-gasdynamic system (3.1)–(3.3) is
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The parameter k is zero in the plane case and unity in the axially symmetric case. The system is closed
by the equations

(5.5)

In the formula for τ, the Schmidt number Sc is set equal to unity. System (5.1)–(5.5) should be supplemented
by initial and boundary conditions.

For the normal and tangential velocity components un and ut on a solid surface Σ, impermeability and
slip conditions were set:

The temperature jump condition

was also set, where Tw is the surface temperature. In the case of a plane surface, an additional boundary con-
dition for pressure had the form

and ensured zero mass flux across the boundary. The viscosity η was calculated as

(5.6)

where η1 is a tabular value of this coefficient at a temperature T1, and ω = 0.5. The relation of η to the mean
free path of molecules λ was determined by the expression

(5.7)

We used an explicit finite-difference method to solve the above system of equations. Spatial derivatives
were approximated by central differences, and the derivatives in time were approximated by first-order
upwind differences. All quantities were computed at the grid points. To improve numerical stability at high
flow velocities, the parameter τ was replaced by τ + αh/cs in some terms without mixed derivatives in spatial
variables, where h is the mesh size, and 0 < α < 1. In all computations, the convergence and accuracy of the
results were analyzed by reducing the mesh size.

In [15], system (5.1)–(5.5) was solved to compute a plane flow over a semi-infinite thin plate parallel to
the incoming supersonic stream. The Mach number M was varied from 1.5 to 20. We analyzed the case of
a monatomic gas of rigid spheres with Pr = 2/3 and γ = 5/3.

In [32], simulation results were presented for supersonic gas flows around a thin disk set perpendicularly
to the incoming supersonic stream. Comparisons with numerical results obtained by solving the Navier–
Stokes equations and also with the results of direct numerical simulations by the Monte Carlo (DSMC)
method performed in the framework of the kinetic model have demonstrated certain advantages of the QGD
equations.

Let us discuss in more detail the numerical results obtained for the structure of a stationary shock wave
in a monatomic polytropic gas on the basis of the quasi-gasdynamic equations. It is well known that, when
the free-stream Mach number M lies in the interval (1, 2), the profiles of flow variables computed with the
use of the Navier–Stokes model are in good agreement with experimental observations. However, there is
a noticeable discrepancy when M @ 2 [26]. In the framework of the costly kinetic approach, the shock-wave
structure is adequately described in a broad range of Mach numbers.

The properties of the shock-wave solutions of quasi-gasdynamic equations were theoretically examined
in [11]. In [14, 32], an explicit, conditionally stable algorithm was employed to compute these solutions,
with all spatial derivatives in the one-dimensional Eqs. (5.1)–(5.5) approximated to the second order of
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accuracy without additional regularizers. The Mach number M was set equal to 2, 5, and 10. In formulas
(5.6) and (5.7), the parameter ω was 0.5 for a gas of rigid spheres and 1 for a gas of Maxwellian molecules.

When M = 2, the QGD models, the Navier–Stokes models, and the DSMC yielded close results consis-
tent with experimental data. In Fig. 1, the profiles of density ρ, velocity u, and temperature T computed by
using the QGD system (dot-and-dash curves) at M = 5 and ω = 0.5 are compared with analogous profiles
obtained on the basis of the Navier–Stokes equations (dashed curves) and by the DSMC method (solid
curves). One can conclude that, for the QGD model, the function u(x) in the whole computational domain
and the function ρ(x) for x > 0 are in a better agreement with the DSMC data than analogous dependences
found by solving the Navier–Stokes system.

In Fig. 2, the distributions of a dimensionless heat flux across a shock wave computed for M = 5, ω =
0.5, and 1 are presented. Here, ρ1  is used as a measurement unit, where ρ1 and cs1 are the density and

sonic velocities ahead of the shock wave. For the QGD and Navier–Stokes systems, the heat flux was cal-
culated by using formulas (3.9) and (2.18), respectively. In the kinetic model, we used the expression

where c = v – u is the molecular thermal velocity, and 〈 〉  means averaging over an ensemble of particles. It
is clear that the values of this quantity computed by applying the QGD and DSMC approaches are very sim-
ilar, whereas the Navier–Stokes model yields a result that is not quite satisfactory. Note that the last term in

cs1
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(3.9) is an O(Kn2) quantity and substantially affects the heat flux, since the Knudsen number is not small in
this problem.

Figure 3 shows the inverse wave thickness λ1/δ as depending on the Mach number M for ω = 0.5 and
ω = 1. Here, λ1 is the mean free path of molecules in the incoming supersonic stream; δ = (ρ2 –
ρ1)/max(dρ/dx); and ρ1 and ρ2 are the gas densities ahead of and behind shock wave, respectively. For ω = 1,
similar results were obtained by using both macroscopic models (curves 1, 2) in the range of the Mach num-
ber indicated above, whereas the QGD system was found to have a certain advantage when ω = 0.5 (curves 2).
All these advantages of the QGD system are more clearly visible at higher Mach numbers. Curves 3 were
obtained by the DSMC method.

The problem of shock-wave structure was also solved by computing QHD system (2.27)–(2.29). It was
found that the results of computations based on the quasi-gasdynamic system are more accurate than those
obtained by using the QHD model.

6. NUMERICAL SIMULATION OF CONVECTIVE FLOWS

Convective flows in closed volumes have been widely investigated on the basis of Navier–Stokes equa-
tions written in the Oberbeck–Boussinesq approximation [30, 33, 34]. Various types of artificial grid regu-
larizers or special finite-difference approximations have been used to obtain stable computational proce-
dures.

Consider the problem of thermal convection of a fluid in a rectangular enclosure of height H and length
L = AH. The relative temperatures T1 and T2 of the left (hot) and right (cold) walls are kept constant, ∆T =
T1 – T2 > 0. One can assume, without loss of generality, that T2 = 0. Let u and v  be the horizontal and vertical
components of the velocity vector u in a Cartesian coordinate system (x, y). Measuring x, y, t, u, v , p, T, and
τ in H, H, H2/ν, ν/H, ν/H, ρ(ν/H)2, ∆T/A, and H2/ν, respectively, we represent system (4.1)–(4.3) written for
plane unsteady flows in the dimensionless form:
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(6.3)

(6.4)

Here, the Grashof number Gr and Prandtl number Pr are calculated as

Let G = {(x, y) : 0 < x < A, 0 < y < 1} be the flow domain. If the fluid does not slip past domain boundaries
and the upper and lower walls are not heat-conducting, then system (6.1)–(6.4) must be supplemented by
the following boundary conditions on the left, right, lower, and upper walls, respectively:

(6.5)

(6.6)

(6.7)

(6.8)

Conditions (6.5)–(6.8) are conservative and ensure that the integral laws of mass and momentum conserva-
tion hold. The unperturbed velocity and temperature fields are used as initial conditions:

(6.9)

The ambiguity in pressure is eliminated by the normalization

(6.10)

To solve the initial–boundary value problem (6.1)–(6.10), we used the conditionally stable, conservative,
and uniform computational algorithm described in [16–18]. The computational domain G was discretized
by introducing a uniform Nx × Ny grid. The equations of motion (6.2) and (6.3) and heat equation (6.4) were
approximated to the second order of accuracy in spatial variables and to the first order in time. The boundary
conditions were automatically approximated by introducing fictitious cells along the domain boundaries.
On each time layer, the computed velocity and temperature fields were used to determine the pressure field
by solving the Poisson equation

which is an equivalent representation of (6.1). We applied a modified conjugate gradient method character-
ized by a high convergence rate. The pressure at the upper right grid point was kept equal to unity. Then,
velocity and temperature were calculated on the next time layer by means of an explicit scheme. All terms
depending on τ were regarded as the artificial regularizers required to stabilize the algorithm.

First, let us discuss the well-known test problem of thermal convection in a square (A = 1) heated on its
left side. The problem was solved with moderate Grashof numbers varied within 103–105 for various values
of τ within 10–5–10–2. The Prandtl number was set equal to unity. Uniform N × N grids were used with
N = 21, 41, and 81.

The streamfunction ψ was derived from the solenoidal field u – w:

Here, wx and wy are the horizontal and vertical components of w, respectively. When τ is small, the vectors
u and u – w differ insignificantly.
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To compute the dimensionless heat flux across the left boundary (the Nusselt number Nu = Nu(y)), we
used the expression

The average Nusselt number was calculated as
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The following notation was also employed: |ψ|mid, the absolute value of the streamfunction at the domain
center; |ψ|max, the maximum of the stream function’s absolute value over the computational domain; umax,
the maximum horizontal velocity in the median vertical cross section; vmax, the maximum vertical velocity
in the median horizontal cross section; Numax, the maximum value of the Nusselt number at the left bound-
ary; and Numin, the minimum value of the Nusselt number at the left boundary.

Figure 4 shows equidistant lines of constant streamfunction (a), isotherms (b) and isobars (c) of the
steady flow computed for Gr = 104, τ = 10–4, and N = 41, which correspond to ψi = ψmax – i(ψmax – ψmin)/15,
Ti = Tmax – i(Tmax – Tmin)/15, and pi = pmax – i(pmax – pmin)/15. In this computation, ψmin = –5.099, ψmax = 0,
Tmin = 0, Tmax = 1, pmin = –5065.8, and pmax = 1660.7. The pressure minimum is reached in the left lower
corner of the domain; the maximum, in its left upper corner. A similar flow pattern was observed both in
experiments [33] and in computations based on the Navier–Stokes model [34].

In Tables 1 and 2, the numerical results are compared with analogous results obtained by using the
Navier–Stokes model written in terms of streamfunction, vorticity, and temperature [34] and with the exper-
imental data reported in [33]. In the range of Gr indicated above, the calculated values of the flow parame-
ters are in good agreement with one another. The numerical accuracy improves when finer grids are used.
It also improves with decreasing τ, i.e., as the time step is reduced. The influence of τ on the flow structure
is illustrated by Fig. 5 (streamlines) and Fig. 6 (isotherms).

Numerical test results obtained for the thermal convection of a fluid with low Pr in rectangular enclo-
sures are presented in [18].

Thus, the computations of the QFD systems performed in this study can serve as a basis for simulating
real flows in a broad range of parameters.

7. CONCLUSIONS

The present study was an analysis of two interrelated mathematical models, the QGD one and the QHD
one. Both models differ from the Navier–Stokes equations by small divergence terms and can be interpreted

Table 1

τ Grid Ref. |ψ|max umax νmax Nu0 Numax Numin

10–4 21 × 21 present 5.044 15.938 19.513 2.306 3.939 0.579

[34] 5.277 16.144 19.363 2.253 3.615 0.591

10–4 41 × 41 present 5.099 16.005 19.663 2.281 3.708 0.591

[34] 5.125 16.262 19.602 2.249 3.563 0.586

10–4 81 × 81 present 5.113 16.070 19.663 2.275 3.649 0.581

[34] 5.086 16.219 19.648 2.247 3.541 0.585

[33] 5.071 16.178 19.617 2.238 3.528 0.586

10–3 21 × 21 present 5.195 15.587 18.565 2.431 4.318 0.529

10–2 21 × 21 present 6.723 13.182 11.542 3.850 9.268 0.352

Table 2

τ Grid Ref. |ψ|mid |ψ|max umax νmax Nu0 Numax Numin

10–5 21 × 21 present 9.264 9.666 32.33 67.70 4.865 9.777 0.204

[34] 10.259 10.860 40.30 65.07 4.532 8.123 0.762

10–5 41 × 41 present 9.502 9.909 33.24 70.91 4.682 8.733 0.729

[34] 9.388 9.918 36.63 68.11 4.554 7.968 0.730

[33] 9.111 9.612 34.73 68.59 4.509 7.717 0.729

10–4 21 × 21 present 9.358 9.754 32.20 66.71 4.906 9.931 –0.033

10–3 21 × 21 present 10.400 10.740 33.12 57.86 5.732 12.091 –0.611
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as systems describing the evolution of spatiotemporal averages of density, velocity, and temperature. Each
model is associated with a particular closure of Eqs. (2.10)–(2.14), which follow from the integral conser-
vation laws for a fixed material volume. In the time-independent form, both systems differ from Navier–
Stokes equations by divergent terms that formally behave as asymptotically small O(Kn2) quantities as
Kn  0. The influence of additional terms is insignificant for steady and quasi-steady gas flows charac-
terized by small Kundsen numbers. However, their contribution is essential for unsteady flows and at Kn
close to unity. The advantages of the new models should be sought in this class of problems.

The derivation of these two systems presented in [35] is based on a finite-difference analysis and differs
from the derivation in Section 2. In [35], the applicability conditions were also discussed for the new mod-
els. It was concluded that the QGD equations should be used in simulations of flows of perfect polytropic
gas, whereas QHD models can describe the motions of real gases and fluids. The scope of these models is
one of the most difficult questions. To provide an answer to this question, further long-term theoretical,
numerical, and experimental studies are required.
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