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Abstract

 

—The system of quasi-gasdynamic equations and an entropy balance equation are presented.
Numerical methods are described for solving the equations, which are used to simulate subsonic and
supersonic viscous unsteady gas flows. Two-dimensional flows are computed as examples.
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INTRODUCTION
The system of quasi-gasdynamic (QGD) equations expands the capabilities of the classical Navier–

Stokes model for describing viscous compressible gas flows. This system was first derived in [1] on the basis
of a well-known kinetic model. A flow was represented as collisionless motion of gas atoms followed by
instantaneous relaxation to a local equilibrium state. In [2–4], the differential QGD equations were phenom-
enologically derived from integral conservation laws written for a moving material volume and the proper-
ties of the QGD system were examined. It was found that the QGD equations are well suited for simulation
of flows in which the gasdynamic parameters do not vary widely with time. Since the first publications on
this subject, numerical methods for solving the QGD equations have been developed and kinetically con-
sistent finite-difference schemes, which are closely related to the QGD equations, have been analyzed [5].

In this study, the QGD equations are written out in an inversion form that corresponds to differential con-
servation laws and an entropy balance equation is given. The modern view of numerical methods for these
equations as applied to unsteady supersonic and subsonic flows is presented, and some examples of compu-
tation of two-dimensional problems are given.

1. QUASI-GASDYNAMIC SYSTEM OF EQUATIONS
Taking into account the external forces, the QGD system can be represented in inversion form:

 

(1.1)
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The system is closed by the equations of state of an ideal polytropic gas:
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is the body density of external forces, 
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is the heat capacity at a constant pressure, and 
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the adiabatic index. The symbols 
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 and · stand for the direct tensor product and the scalar product, respec-
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, t) are interpreted as the mass flux density, the
viscous stress tensor, and the heat flux, respectively, and they are calculated by the formulas

(1.5)

(1.6)

(1.7)

where

(1.8)

(1.9)

(1.10)

The functions µ = µ(T), κ = κ(T), and τ = τ(p, T) are defined as

(1.11)

where µ1 is a given dynamic viscosity at temperature T1, ω is a given power-law parameter, cp = γR/(γ – 1)
is the specific heat capacity at constant pressure, Pr is the Prandtl number, and Sc is the Schmidt number.

When τ = 0, the QGD equations become the Navier–Stokes equations.
It was shown in [2, 3] that QGD system (1.1)–(1.11) is dissipative and an entropy balance equation can

be derived for it. To obtain this equation, Eqs. (1.1)–(1.3) were represented in [3] in nonconservative form:

(1.12)

(1.13)

(1.14)

Here, D = ∂/∂t + (u – w) · — is a differential operator. By using the tensor analysis rules, the entropy balance
equation is derived from Eqs. (1.12)–(1.14) to be

(1.15)

where the nonnegative entropy production is defined by the formula

(1.16)

in which (ΠNS : ΠNS) = (ΠNS)ij(ΠNS)ij is the double scalar product of two identical tensors. Note that
the terms involving τ in (1.16) are the squared left-hand sides of the classical time-independent Euler equa-
tions with positive coefficients. By using the mass conservation law (1.1), identity (1.15) can be represented
in conservative form:

(1.17)

Consider a gas flow within a closed vessel V0 with a thermally nonconductive wall Σ0. System (1.1)–
(1.11) is supplemented with the initial conditions
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and the boundary conditions

(1.19)

Here, ρ0 = ρ0(x) > 0, u0 = u0(x), and T0 = T0(x) > 0 are the given density, velocity, and temperature at the
time t = 0. The first condition in (1.19) means that the gas adheres to the vessel’s walls, the second condition
ensures no mass flux through the boundary, and the third condition implies that the normal component of
the heat flux is zero on Σ0 . Integrating (1.17) and taking into account (1.18) and (1.19), we obtain an ine-

quality for the total thermodynamic entropy S(t) = dx:

(1.20)

It follows from (1.20) that S(t) is a nondecreasing function of time. A similar fact is known to hold for
the Navier–Stokes system.

An asymptotic analysis performed in [2, 3] for the QGD system with the Knudsen number tending to
zero showed that, for steady flows, the additional terms proportional to τ are o(Kn2) quantities; i.e., in the
limit of a vanishing Knudsen number, QGD equations (1.1)–(1.11) become the Navier–Stokes equations.
Recall that the Knudsen number is defined as Kn = λ/L (where λ is the mean free path in an unperturbed
flow and L is the characteristic length).

For Kn tending to unity and for rapidly varying flows, the additional dissipative terms can have a larger
effect. In the boundary-layer approximation, the QGD equations, as well as the Navier–Stokes equations,
are transformed into the Prandtl equations.

Because of the no-slip and impermeability conditions imposed (see the first two relations in (1.19)), the
additional dissipation in the QGD equations is nonzero only in the flow domain and vanishes on the bound-
ary of the domain. In particular, for the QGD equations, the heat flux toward the wall and the off-diagonal
components of the viscous stress tensor, which determine friction on the boundary, coincide with the corre-
sponding quantities for the Navier–Stokes equations.

2. FINITE-DIFFERENCE APPROXIMATION OF THE QGD EQUATIONS

A finite-difference approximation to the QGD equations is constructed using the QGD system written as
conservation laws (1.1)–(1.3). Unlike previously developed methods, the approximations are constructed in
the flux form for the mass flux density jm, the heat flux q, and the viscous stress tensor Π written in the form
of (1.5)–(1.10), which makes the numerical algorithm compact and economic. As a result, the values of the
viscosity, heat conductivity, and relaxation parameter in the additional QGD terms can be varied indepen-
dently [6, 7].

For two-dimensional flows, the QGD equations are given by

(2.1)

Here, ux and uy are the projections of the velocity u onto the x and y axis, respectively; E is the total energy
of a unit volume; and H is the total specific enthalpy. The last two quantities are calculated by the formulas

The components of the mass flux density, jmx and jmy, are calculated as
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where

The components of Π are determined by the formulas

(2.3)

and , , R*, and the divergence of the velocity (divu) are given by the formulas

(2.4)

The components of the heat flux q are calculated as

(2.5)

where the Navier–Stokes terms  and  are given by the formulas

System (2.1)–(2.5) is supplemented with initial and boundary conditions.
To solve the problem numerically, a grid in space and time is introduced in the computational domain.

The components of the velocity, pressure, and density are determined at the nodes of the grid. The values of
the gasdynamic characteristics ψ = (ρ, ux, uy, p) at the nodes with half-integer indices and at the cells' centers
are determined as the arithmetic mean of their values at the adjacent nodes:

For the remaining functions f = f(ρ, ux, uy, p), we set f = f(ρij, (ux)ij, (uy)ij, pij). Similar relations also hold
for nodes with half-integer indices.

Initial–boundary value problem (2.1) is solved by applying a finite-difference scheme that is explicit in
time. The spatial derivatives are approximated by central differences with second-order accuracy, and the
time derivatives are approximated by forward differences with first-order accuracy.

The first equation in system (2.1) is approximated by

where ∆t is the time step and  is calculated at the succeeding time level. The other equations in system
(2.1) are approximated in a similar manner.
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To obtain a unified procedure for computing gasdynamic characteristics at all the interior points, includ-
ing the near-boundary ones, we introduce a set of fictitious cells adjacent to each boundary. If the computa-
tional domain consists of rectangular subdomains, then, for an accurate approximation of the equations near
the corner points, the computational domain is divided into the corresponding rectangular subdomains and
fictitious cells are introduced along their boundaries [6]. An algorithm for finding the density, velocity com-
ponents, and pressure consists of two steps. At the first, the values in the fictitious cells are determined from
the boundary conditions. At the second step, the flow variables at the interior points are computed at the next
time level. To solve the initial–boundary value problem numerically, we use a finite-difference scheme with
explicit time differencing. Figure 1 shows an example of partitioning the computational domain and the
location of the fictitious cells for an axisymmetric flow.

3. NUMERICAL SIMULATION OF SUPERSONIC FLOWS

To compute supersonic flows, QGD equations (2.1)–(2.5) are nondimensionalized using the following
reference parameters: the free-stream density ρ∞, the free-stream velocity c∞, and the reference length L. The
relations between the dimensional and nondimensional characteristics (the latter are marked with a tilde)
are given by

(3.1)

The Mach and Reynolds numbers are defined as

where Ò∞ =  is the speed of sound at the temperature T∞.

After nondimensionalization, system (2.1)–(2.5) does not change in form. The coupling equations

become p = ρT/γ and c = .

To ensure the stability of a numerical solution, a term proportional to the mesh size is added to τ. Then,
the relaxation parameter, viscosity, and heat conductivity are calculated as

(3.2)

where hxy =  with hx and hy being the mesh sizes in the x and y directions and α is a numerical factor
on the order of unity.

In this numerical algorithm, the viscosity and heat conductivity are calculated by using τ. Thus, in the
computational algorithm for supersonic flows, the stabilizing grid term αhxy/c is involved in viscosity and
heat conductivity.
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Based on formulas (3.2), a condition can be written under which the additional grid term does not exceed
the natural viscosity. Neglecting the constants on the order of unity, we obtain a condition under which the
additional term can be assumed to be small:

When ω = 1/2, this condition simplifies to αhxy < M/(ρRe).

The algorithm described was tested by computing the uniform supersonic flow of a viscous compressible
gas over a cylinder end placed at a zero angle of attack [7]. The computational domain for this problem is
schematically shown in Fig. 1. The characteristic linear size in this problem was the radius of the cylinder.
The problem was solved using an analogue of system (2.1)–(2.5) written in cylindrical coordinates [6, 7].
The boundary conditions at the inlet (right) boundary corresponded to the free stream: ρ∞ = 1, (uz)∞ = –M,
(ur)∞ = 0, and p∞ = 1/γ. The symmetry conditions were set on the axis of symmetry, and conditions (1.19)
were set at the end face and the lateral surface of the cylinder. Mild boundary conditions (i.e., the zero nor-
mal derivatives of the density, pressure, and velocity components) were specified at the free upper and outlet
(left) boundaries. The initial conditions were set using the free-stream characteristics. We considered a flow
of a viscous monatomic gas consisting of rigid spheres with parameters γ = 5/3, Pr = 2/3, Sc = 0.77, ω = 0.5,
and Re = 104.

The computations were performed on uniform spatial grids with the mesh sizes hr = hz = 0.05 and 0.025
for 0.2 < α < 1 and M = 1.5, 2, 3, 5, 50. The steady-state solution was found by the relaxation method. In
all the computations, the time step ∆t ranged between 10–3 and 10–6. The time step decreased with increasing
Mach number and reducing mesh size. The accuracy of the solution was estimated from the computed decel-
eration and the position of the shock wave in front of the cylinder end. In the analyzed range of α, the accu-
racy of the solution and the convergence rate of the numerical algorithm little depended on α. The optimal
value was α = 0.5. The method demonstrated high accuracy in the computation of shock waves and no oscil-
lations of the solution at high Mach numbers [7].

Equations (2.1)–(2.5) were used to compute a supersonic flow in a channel with a step. The complex
geometry of the shock waves developing in the channel serves as a well-known test for evaluating solution
methods designed for the Euler and Navier–Stokes equations [8, 9].

The problem was solved in the following setting: the length of the channel was equal to 3, its width
was 1, and the height of the step (located a distance 0.6 from the channel) was equal to 0.2. The gas was
assumed to be inviscid and thermally nonconductive with the adiabatic index γ = 1.4. A uniform flow with
M = 3 was set on the inlet (right) boundary, and the mild boundary conditions were specified on the outlet
(left) boundary. The reflecting boundary conditions were set on the walls of the channel and the step. In the
computation of τ, we set α = 0.3. Figure 2 shows the relaxation of the flow (density distribution) to a steady
state as computed on a 240 × 80 grid. The flow pattern at the time t = 4 corresponds to the data obtained
using high-order accurate finite-difference schemes [8, 9]. Figure 3 displays the density distributions in the
channel at t = 4, which demonstrate the convergence of the numerical solution as the spatial grid condenses.
The mesh sizes were specified as hx = hy = 0.025, 0.0125, and 0.00625. The time steps ∆t in dimensionless
units were set equal to 10–3, 5 × 10–4, and 10–4, respectively.

4. FEATURES OF THE ALGORITHM FOR COMPUTING SUBSONIC FLOWS

In the computation of subsonic flows, in contrast to (3.1), the reference velocity is defined as the free-
stream velocity u∞. The dimensionless viscosity, heat conductivity, and τ are calculated by the formulas

In contrast to the algorithm for computing supersonic flows, in the case of subsonic flows, the additional
stabilizing term αhxy/c (proportional to the mesh size) is introduced only in the relaxation parameter:

This term can be assumed to be small compared with the actual viscosity if αhxy < M/Re. This term is not
involved in the formulas for calculating the friction and the heat flux toward the wall.

α
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In the computation of subsonic flows, the problem arises of setting and numerical implementation of
boundary conditions on the free boundaries of the computational domain. Such nonreflecting boundary con-
ditions must not degrade the flow field inside the computational domain and must provide the absorption or
transmission of disturbances originating inside the computational domain and arriving at the boundary. As
a rule, these boundary conditions are based on Riemann inversions for the corresponding Euler equations
and are known as characteristic boundary conditions [10, 11]. They are used in computations of both viscous
and inviscid flows. Numerous versions of such conditions and their numerical implementations have been
proposed. Nevertheless, their application faces serious difficulties associated with their numerous versions
in differential and finite-difference form and with the insufficient mathematical substantiation of these con-
ditions for viscous gas flows.
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Within the framework of the QGD algorithm for setting conditions on free subsonic boundaries, simple
and natural boundary conditions can be applied that are similar to those used for viscous incompressible
flows. The setting of such conditions is described for the problem of a flow in a channel with a sudden
enlargement (see Fig. 4).

Assume that the flow at the inlet of the channel is governed by Poiseuille’s equation:

The condition that u∞ = 1 at the inlet is used to calculate the pressure gradient at the inlet of the channel.
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To be specific, we set H/h = 2. Then,

(4.1)

The inlet boundary conditions (4.1) are supplemented with conditions for the density (ρ = 1) and for the
vertical velocity (uy = 0).

At the outlet boundary, the mild boundary conditions are specified for the density and velocity compo-
nents and the pressure is held fixed:

On the rigid walls of the channel, we set the no-slip and impermeability conditions and the adiabatic con-
ditions for the temperature (1.19).

The algorithm described was used to compute viscous compressible gas (air) flows (with the parameters
γ = 1.4, Pr = 0.373, Sc = 0.746, and ω = 0.74) in channels with a sudden expansion or contraction at the
Reynolds numbers 100, 200, 300, and 400 at M ranging from 0.01 to 0.5. We used uniform spatial grids with
the mesh sizes hx = hy = 0.1 and 0.05. The time steps ∆t in dimensionless units were chosen in the range from
10–3 to 10–4.

For the flows under consideration, the gradients of density are proportional to M, which allows us to esti-
mate the accuracy of the resulting solution by comparing it with the computations performed in the approx-
imation of a viscous incompressible fluid [12, 13].

In the problem of flow behind a backward-facing step, it was found that the length of the separation
region agrees with the results obtained in computations and experiments for a viscous incompressible fluid
[12] and the accuracy of the numerical results based on the QGD model virtually does not depend on α in
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the range 0.5 < α < 2. When α lies outside this range, the time step has to be reduced and the number of
steps required for achieving a steady state increases. In the analyzed range of the Mach number, the length
of the separation region virtually does not depend on the Mach number. A reduction in the Mach number
increases the number of steps and the time required for achieving a steady state. Figure 5 displays the pro-
cess of flow relaxation for Re = 300 (α = 0.5, M = 0.1, a 160 × 120 grid), namely, the distribution of uy

(shown by shades of gray) and streamlines. It can be seen that disturbances freely cross the outlet boundary
of the region.

The flow computations for the channel with a sudden contraction were compared with the results
obtained in [13] within the framework of the incompressible Navier–Stokes equations written in terms of
stream function and vorticity variables. Figure 6 shows the distribution of uy and streamlines for the follow-
ing two versions of a steady flow: Re = 100 and 400 (M = 0.1, α = 0.5, a 50 × 20 grid). In the first case, no
separation flow is formed in front of the step or over it. At Re = 400, a vortex is formed in front of the step.
The formation of a separation region with increasing Reynolds number and its size agree well with the
results of [13].

To conclude, we note that, in our view, the simplicity of implementation and the good accuracy of the
numerical algorithms constructed for computing supersonic and subsonic unsteady gas flows are ensured
by the special regularizers used in the QGD equations.
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