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Abstract. One considers the flow of a gas through a 2D or axisymmetric microchannel. The objective is 
to find an expression of the mass-flow rate as a function of pressures at both channel ends, gas properties 

and gas-surface interaction. Previous expressions are reminded that take into account rarefaction effects 

through terms of 1st and 2nd order in Knudsen number, added to the Poiseuille formula. The paper 

emphasizes on the correct evaluation of the additional terms. Then the expression of the flow rate in the 

free molecular regime is presented, based on a numerical simulation at a molecular level. Finally, an 

interpolation formula is proposed for the intermediate (transitional) regime. It fits with both previous 

approaches and does not require any additional adjustment. 

1. INTRODUCTION 

Under usual conditions, the flow of a gas through a two-dimensional or axisymmetric 

channel is governed by Navier-Stokes (NS) equations. The implicit hypothesis in this 

approach it that of a local thermodynamic equilibrium. Molecules that are present in a 

small volume (i.e. a volume whose dimensions are much smaller than the transverse 

dimension H of the channel) have enough collisions between themselves to form an 

equilibrium population. The thermal speed of molecules is governed by a distribution 

function close to a Maxwellian one. The transverse distribution of flow velocity and the 

flow rate through the channel are given by the well-known Poiseuille solution. This 

approach fails when the molecular mean free path λ is not small compared with H. This 

is a so-called rarefaction effect and it can be encountered in microchannels, 

characterized by very small dimensions. 

If the Knudsen number (𝐾𝑛 = 𝜆/𝐻) remains rather small (say 𝐾𝑛 < 0.4), rarefaction is 

can be taken into account by introducing changes into the NS approach. One can 

introduce a velocity slip at the wall and/or introduce a non-Newtonian behavior of the 

gas through additional dissipation terms. The approach remains a continuum one. The 

resulting changes in the expression of the channel flow rate will be presented. 
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When Kn is very large (say 𝐾𝑛 > 30), intermolecular collisions are much less frequent 

than the molecule-wall collisions and they play a negligible role. This is true also for 

transport properties (including viscosity), as they are based on collisional properties. A 

statistical approach, suited to this regime, will be presented. 

Finally a method will be presented to estimate the flow rate through a microchannel for 

intermediate values of Kn. It is based on an interpolation between both extreme 

approaches, similar the bridging methods used for hypersonic rarefied flows. 

2. CONTINUUM APPROACH 

One considers the isothermal flow at temperature T through a rectangular microchannel 

of length L, width D and depth H (𝐿 ≫ 𝐷 ≫ 𝐻). Considering the problem as a two-

dimensional one, we write the flow rate induced by a difference between end pressures 

as
1
 

 𝑞 =  
𝐷 𝐻3  𝑝out

2

24 𝜇𝑅𝑇𝐿
×  𝑟𝑝

2 − 1  ×  1 + 𝐴1𝐾𝑛out + 𝐴2𝐾𝑛out
2  , (1) 

where the first factor is the Poiseuille flow rate, subscript out refers to outlet conditions, 

rp is the ratio of end pressures (𝑟𝑝 = 𝑝in/𝑝out), μ is the gas viscosity at temperature T, R 

is the perfect-gas constant per unit-mass, Knout is the Knudsen number λout/H, where the 

mean free path is estimated in the downstream conditions. Coefficients A1 and A2 

introduce 1
st
 and 2

nd
 order corrections to the Poiseuille expression, respectively. 

2.1. First-order correction 

The first-order correction (𝐴1𝐾𝑛out) originates from the non-zero longitudinal gas 

velocity uw along the wall. A non-rigorous but simple interpretation of this so-called 

velocity slip follows. Assume perfect accommodation of molecules at the wall. In the 

immediate vicinity of the wall, half of the molecules come directly from the wall and 

have thus a mean longitudinal velocity equal to zero. The other half come from the bulk 

of the flow and more specifically from a distance of the order of λ, where the 

longitudinal velocity is approximately 𝑢𝑤 +  𝜆 𝜕𝑢 𝜕𝑦  𝑤 . Here y denotes the distance 

from the wall. Thus the mean velocity at the wall is 

 uw =
1

2
 0 +  uw + λ  

∂u

∂y
 

w
  , resulting in uw = λ  

∂u

∂y
 

w
. (2) 

More correct expressions of the velocity slip have been proposed. They are presented 

and discussed, e.g. by Barber and Emerson
2
 who write 

 uw = α1 ×  
2−au

au
 × λ  

∂u

∂y
 

w
 with α1 = 1.016 ×

2

√π
≅ 1.1466 (3) 

Additional terms should be introduced for a non-isothermal flow and for a wall that 

presents a curvature rather than being plane. au is the accommodation coefficient for 

tangential momentum accommodation. α1 is absent from the simple expression (Eq.2) 

and comes from kinetic considerations. This coefficient is a source of difficulty: 

 The 1.016 factor is replaced by 0.98737 by some authors, due to a different 

approach for solving the Boltzmann equation; 

 It has been established for full accommodation  𝑎𝑢 = 1  and may depend on au 

in the case of partial accommodation; 

 It has been established for rigid-sphere molecules, i.e. for a gas whose viscosity 

varies with temperature as 𝜇~𝑇1/2. 
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 Many authors just take α1 = 1. 

As the accommodation coefficient is often obtained by fitting, based on experimental 

flow rates, a change in α1 results in a different conclusion as to the accommodation 

coefficient. Barber and Emerson
2
 show that experiments by Colin et al.

3
 are interpreted 

by an accommodation coefficient au = 0.93 if α1 is taken equal to 1 or by a nearly full 

accommodation (au = 0.998) if α1 is taken equal to 1.1466. 

Furthermore the definition of the mean free path is somewhat confusing. Bird
4
 

demonstrate that for a VHS (Variable Hard Sphere) gas, the viscosity law looks like 

𝜇~𝑇𝜔  and the mean free path is related to the macroscopic parameters of the flow by 

 𝜆 = 𝐾 𝜔 ×
𝜇 𝑇 

𝜌× 2𝜋𝑅𝑇  1 2  with 𝐾(ω)=
2 7−2𝜔  5−2𝜔 

15
 , (4) 

where ρ is the density. For ω = 1/2, one finds the rigid-sphere expression 

 𝜆 =
16

5

𝜇 𝑇 

𝜌× 2𝜋𝑅𝑇  1 2  (5) 

which differs slightly from that of Chapman, valid also for rigid spheres, but with a 

different definition of the mean free path 

 𝜆 =
𝜇 𝑇 

𝜌
 

𝜋

2𝑅𝑇
 

1/2

 (6) 

By extension, Eq. 4 can be used for any viscosity law (e.g. a Sutherland's law), if ω is 

considered as the exponent of a local power-law viscosity, fitted at temperature T : 

𝜔 =  𝑑𝜇 𝑑𝑇   𝜇 𝑇   . Many authors use Eq. 6 rather than Eq. 4, whatever the viscosity 

law, which, in the worst case induces an error by a factor 1.6 on the mean free path and 

on the Knudsen number. Therefore, it is essential to know how the mean free path has 

been calculated when using results found in the literature. 

If Eq. 3 is retained for the velocity slip, one can integrate the transverse velocity profile 

across the channel section as a function of the longitudinal pressure gradient dp/dx to 

get the flow rate. Then pressure can be integrated along the channel for a given flow 

rate. Coefficient A1 in Eq. 1 is then found as  

 𝐴1 = 12𝛼1 𝜔, 𝑎𝑢 ×  (2 − 𝑎𝑢)/𝑎𝑢  / 𝑟𝑝 + 1 . (7) 

As explained before, α1 is close to unity, but depends actually on both ω and au. 

2.1. Second-order correction 

A number of authors proposed to introduce a second-order term in the expression of the 

velocity slip. Assuming full accommodation and a rigid-sphere gas, Hadjiconstantinou
5
 

writes the velocity slip as 

 𝑢𝑤 = 𝛼1 × 𝜆  
𝜕𝑢

𝜕𝑦
 
𝑤

− 𝛼2 × 𝜆2  
𝜕2𝑢

𝜕𝑦 2 
𝑤

 (8) 

where he takes α1 = 1.11 (see discussion above) and α2 = 0.61. 

Barber and Emerson
2
 as well as Karniadakis et al.

6
 present tables of α1 and α2 values 

proposed by different authors. α2 is either a constant or a function of Prandtl number 

and of the specific heat ratio. Its value varies from -0.5 to 1.309. In all cases, the 

transverse velocity profile can be integrated and the value of α2 determines the value of 

A2 in Eq.1 : 

 𝐴2 = 24𝛼2 × ln 𝑟𝑝 /(𝑟𝑝
2 − 1). (9) 
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In particular, the value α2 = 9/8 proposed by Deissler
7
 results in 

 𝐴2 = 27 × ln𝑟𝑝 /(𝑟𝑝
2 − 1), (10) 

which makes Eq.1 reproduce experimental flow rates obtained by Aubert and Colin
8
 in 

the range 𝐾𝑛out < 0.25. 

Hadjiconstantinou
9
 reminds that the velocity slip uw is a boundary condition associated 

to NS equations to make the latter describe correctly the flow where they are valid, i.e. 

in the bulk of the flow, but not necessarily in the vicinity of the wall. In the Knudsen 

layer (of thickness ≅ 𝜆)  the gas is in strong non-equilibrium and NS equations fail to 

give the physical velocity (Figure 1). By integrating the NS velocity profile across the 

channel, one gets an error on the flow rate. The error is second-order in Kn and does not 

affect the first-order approximation. According to Hadjiconstantinou α2 should be 

replaced by 𝛼2 − 𝜉 in the expression of A2, with 𝜉 = 0.296 for a rigid-sphere gas. 

Hence 

 𝐴2 = 24(𝛼2 − 𝜉) × ln 𝑟𝑝 /(𝑟𝑝
2 − 1). (11) 

In other terms, the determination of the second-order coefficient from experimental data 

results in 𝛼2 − 𝜉 rather than in α2. 

 

 

Figure 1. Velocity slip at the wall 

A number of questions remain open: 

 How to modify α2 in the case of partial accommodation? Karniadakis et al.
6
 

affect both the first-order and the second-order terms by the factor (2 − 𝑎𝑢)/𝑎𝑢  

in Eq.8. 

 What is the value of 𝜉 for a gas other than a rigid-sphere one? 

Another interpretation of the second-order term in Eq.8 is proposed by Elizarova and 

Sheretov
10

. They consider that in a strong non-equilibrium situation, the gas does not 

behave as a Newtonian one. Accordingly they introduce additional dissipation terms in 

NS equations. The resulting equations, referred to as quasigasodynamic (QGD) or 

quasihydrodynamic (QHD) system can be applied to a microchannel, associated to first-

order velocity slip. They obtain an expression of the flow rate identical to Eq.1, with 

 𝐴2 =  
48𝜋

𝐾(𝜔)2 𝑆𝑐
 ×

ln 𝑟𝑝

𝑟𝑝
2−1

, where Sc is the Schmidt number
4
 𝑆𝑐 =

5

7−2𝜔
. (12) 

Although based on a totally different interpretation, Eq.12 results to a value of A2 that is 

nearly equal to that given by Eq.9 with Deissler condition and leads to the same good 

agreement with experimental results. 

u physical 

u NS 

uw 
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To conclude this section, Eq.1 reproduces the correct flow rate in the range (𝐾𝑛out <
0.25 or even 𝐾𝑛out < 0.4). However, for the first-order term, the value of α1 must be 

consistent with the definition of the mean free path. Otherwise, au loses its physical 

meaning. 

The second-order term accounts potentially for different phenomena and it is probably 

unrealistic to get it from theoretical considerations based on Taylor developments. This 

is because in the Kn range where the corrections would have some interest, the sum of 

first- and second-order terms are much larger than the Poiseuille term. Thus A2 can be 

considered as purely phenomenological and be written as 

 𝐴2 = 𝐵 𝜔, 𝑎𝑢 × ln 𝑟𝑝  𝑟𝑝
2 − 1  , (13) 

where B is a function of ω and au to be fitted to experiment. 

For an axisymmetric microchannel of radius H, Lengrand et al.
1
 give an expression of 

the flow rate based on QGD equations 

 𝑞QHD =  
𝜋𝐻4𝑝out

2

16 𝜇𝑅𝑇𝐿
×  𝑟𝑝

2 − 1   1 +
8𝛼1

𝑟𝑝 +1
×

2−𝑎𝑢

𝑎𝑢
𝐾𝑛out +

32𝜋

𝐾(𝜔)2𝑆𝑐
×

ln 𝑟𝑝

𝑟𝑝
2−1

𝐾𝑛out
2  . (14) 

The factor α1 in the first-order term was absent in Ref.1 and has been introduced here 

according to the above discussion. 

More generally, any second-order approach leads to  

 𝑞 =  
𝜋𝐻4𝑝out

2

16 𝜇𝑅𝑇𝐿
×  𝑟𝑝

2 − 1   1 + 𝐴1𝐾𝑛out + 𝐴2𝐾𝑛out
2  . (15) 

In both the rectangular and axisymmetric configuration, the Poiseuille flow rate is 

proportional to the difference of the squared end pressures. 

2. FREE MOLECULAR APPROACH 

One considers a microchannel that joins two reservoirs. The free molecular regime 

corresponds to conditions when the mean free paths in both reservoirs are much larger 

than the transverse dimensions of the microchannel. The gas in each reservoir is 

considered to be at rest in thermodynamic equilibrium under pressures pin, pout and 

temperatures Tin, Tout. The local properties of the gas in the channel do not play any role 

in the process. Even if pressure and temperature can be defined along the channel, each 

molecule behaves independently of the other ones and has no collision with them. It is 

thus unrealistic to describe the free molecular flow by such quantities as the pressure 

gradient 𝑑𝑝 𝑑𝑥  or by a local property such as viscosity. In contrast, a molecular 

description is possible. Here we summarize an approach
1
, based on an example given by 

Bird
4
. 

A gas molecule that enters the channel at one end will collide one or more times with 

the channel wall and will exit through the other end with probability P and through the 

same end with probability 1 − 𝑃. In an equilibrium gas at rest, the number of molecules 

crossing the unit-area per unit-time is 

 𝑁 = 𝑛 2𝑅𝑇 1/2  2𝜋1/2  , (16) 

where n is the number density. This formula is used to estimate the number flux 

entering both channel ends. Multiplying by the molecular mass and by the channel area 

yields the mass flow 
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 𝑞𝐹𝑀 =
𝑃𝐴

 2𝜋 1/2
 𝜌in 𝑅𝑇in 

1/2 − 𝜌out 𝑅𝑇out 
1/2 =

𝑃𝐴

 2𝜋 1/2  
𝑝in

 𝑅𝑇in 1/2  −
𝑝out

 𝑅𝑇out 
1/2   (17) 

with A = H D for a rectangular channel and 𝐴 = 𝜋 𝐻2 for an axisymmetric one with 

radius H. 

The transmission probability P is the same in both directions and depends only on 

channel geometry and gas-surface interaction. For an isothermal flow, Eq.17 reduces to 

 𝑞FM =
𝑝out× 𝑟𝑝−1 

 2𝜋𝑅𝑇  1/2 × 𝑃 × 𝐴. (18) 

The remaining task is the estimation of P. One applies a Monte Carlo method that 

consists in injecting a large number of molecules through one of the channel ends and 

observing which end they exit. Each molecule is followed in the calculation and each of 

its reflections on the wall is treated either as specular (with probability 1 − 𝑎) or as 

diffuse with full accommodation (with probability a), according to the Maxwell model. 

With this model, each accommodation coefficient is equal to a including the tangential 

momentum accommodation coefficient. Thus, we can confuse a and au. In computing 

the trajectory of a molecule and its successive collisions, only the direction of velocity 

is used and not its value. P is thus independent of gas and wall temperatures. It depends 

only on L/H and a. 

L/H a = 1 a = 0.5 a = 0.2 a = 0.1 a = 0.01 

1.00E-02 9.95E-01 9.97E-01 9.99E-01 1.00E+00 1.00E+00 

3.00E-02 9.86E-01 9.93E-01 9.97E-01 9.99E-01 1.00E+00 

1.00E-01 9.52E-01 9.76E-01 9.90E-01 9.95E-01 1.00E+00 

3.00E-01 8.71E-01 9.33E-01 9.72E-01 9.86E-01 9.99E-01 

1.00E+00 6.84E-01 8.20E-01 9.17E-01 9.56E-01 9.95E-01 

3.00E+00 4.57E-01 6.41E-01 8.08E-01 8.88E-01 9.86E-01 

1.00E+01 2.41E-01 4.05E-01 6.12E-01 7.41E-01 9.57E-01 

3.00E+01 1.16E-01 2.26E-01 4.01E-01 5.43E-01 8.92E-01 

1.00E+02 4.72E-02 1.02E-01 2.11E-01 3.20E-01 7.49E-01 

3.00E+02 1.94E-02 4.52E-02 1.01E-01 1.68E-01 5.52E-01 

1.00E+03 7.06E-03 1.72E-02 4.14E-02 7.30E-02 3.28E-01 

3.00E+03 2.72E-03 6.84E-03 1.71E-02 3.14E-02 1.73E-01 

1.00E+04 9.71E-04 2.45E-03 6.23E-03 1.18E-02 7.56E-02 

Table 1. Probability P(L/H, a) for a molecule to pass through a 2D channel of length L and depth H. 

a is the accommodation coefficient. 

 
Figure 2. Probability P(L/H, a) for a molecule to pass through a 2D channel  of length L and depth H. 

a is the accommodation coefficient. 

 

Probabilité de transmission (2D plan, profondeur H)

1.E-03

1.E-02

1.E-01

1.E+00

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

L/H

P

a=1

a=0.5

a=0.2

a=0.1

a=0.01
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The calculation has been carried out for a number of combinations (L/H, a) and the 

corresponding values of P are given in Table 1, and Figure 2 for a rectangular or 2D 

channel and in Table 2 and Figure 3 for an axisymmetric channel. In both cases, the 

transmission probability tends to zero as  𝐿/𝐻 −1 when 𝐿 𝐻 → ∞. This behavior is the 

same as in the continuum regime, but it is obtained only for "very long" channels. 

In both the rectangular and axisymmetric configuration, the free molecular flow rate is 

proportional to the difference between end pressures, in contrast with the Poiseuille 

solution. 

2. TRANSITIONAL REGIME 

A method that has been widely used for solving aerothermodynamic problems in 

rarefied conditions is the so-called bridging method. It allows one to estimate an overall 

quantity in a regime intermediate between the continuum and the free molecular 

regimes. For illustration purpose, assume that we want to estimate the drag coefficient 

CD of a space vehicle. A first calculation based on a continuum approach results in a 

value CD,C. A second calculation under free molecular assumption results in a value 

L/H a=1 a=0.5 a=0.2 a=0.1 a=0.01 

1.00E-02 9.95E-01 9.98E-01 9.99E-01 1.00E+00 1.00E+00 

3.00E-02 9.85E-01 9.93E-01 9.97E-01 9.98E-01 1.00E+00 

1.00E-01 9.53E-01 9.75E-01 9.90E-01 9.95E-01 9.99E-01 

3.00E-01 8.70E-01 9.28E-01 9.68E-01 9.82E-01 9.98E-01 

1.00E+00 6.72E-01 7.96E-01 8.93E-01 9.37E-01 9.90E-01 

3.00E+00 4.21E-01 5.88E-01 7.56E-01 8.41E-01 9.71E-01 

1.00E+01 1.91E-01 3.39E-01 5.35E-01 6.67E-01 9.21E-01 

3.00E+01 7.68E-02 1.65E-01 3.22E-01 4.59E-01 8.32E-01 

1.00E+02 2.52E-02 6.11E-02 1.45E-01 2.41E-01 6.64E-01 

3.00E+02 8.75E-03 2.24E-01 5.88E-02 1.09E-01 4.61E-01 

1.00E+03 2.67E-03 7.09E-03 1.96E-02 3.86E-02 2.45E-01 

3.00E+03 8.87E-04 2.37E-03 6.75E-03 1.38E-02 1.11E-01 

1.00E+04 2.58E-04 7.07E-04 2.10E-03 4.29E-03 3.98E-02 

Table 2. Probability P(L/H, a) for a molecule to pass through an axisymmetric channel 

 of length L and radius H. a is the accommodation coefficient. 
 

 
Figure 3. Probability P(L/H, a) for a molecule to pass through an axisymmetric channel 

 of length L and radius H. a is the accommodation coefficient. 

 

Probabilité de transmission (axisymétrique, rayon H)
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CD,FM. An interpolation (bridging) function, supposedly universal for a given geometry 

is applied to obtain CD from CD,C and CD,FM. 

In the case of a rectangular microchannel, we know the flow rate expression for 

𝐾𝑛out → 0 (Poiseuille expression) and for 𝐾𝑛out → ∞. The success of Eq.1 for 

moderate Knudsen numbers suggests an expression of the flow rate that coincides with 

Eq.1 when 𝐾𝑛out → 0 and reduces to Eq.18 when 𝐾𝑛out → ∞. This is achieved if we 

replace Eq.1 by  

 𝑞 =  
𝐷 𝐻3  𝑝out

2

24 𝜇𝑅𝑇𝐿
×  𝑟𝑝

2 − 1  ×  1 + 𝐴1𝐾𝑛out +
𝐴2𝐾𝑛out

2

1+𝛽𝐾𝑛out
 . (19) 

and take  

 𝛽 =
𝐵(𝜔 ,𝑎𝑢 )

24
×

ln 𝑟𝑝

𝑟𝑝−1
×   

𝑃 𝐿/𝐻 ,𝑎𝑢  

𝐾 𝜔 
×

𝐿

𝐻
 −  

𝛼1(𝜔 ,𝑎𝑢 )

2
×

2−𝑎𝑢

𝑎𝑢
  

−1

. (20) 

Here we used Eq.4 to relate λ and μ and we used Eqs. 7 and 13 as expressions for A1 

and A2, respectively. 

As an example, we consider the flow through a rectangular microchannel. The flowing 

gas is air at 300 K (µ=1.85 × 10
-5

 Pa.s, ω = 0.769, R = 287 J.kg
-1

.K
-1

). The channel has 

dimensions H = 10µm, D = 0.15 mm, L = 3 mm. The pressure ratio is 𝑟𝑝 = 2. Full 

accommodation is assumed at the wall (𝑎 = 𝑎𝑢 = 1). The ratio L/H is equal to 300 and 

the probability P is equal to 0.0194. We take 𝛼1 = 1.146 and B = 27, hence 𝐴1 = 4.584 

and 𝐴2 =  6.238. The pressure 𝑝out was varied from 1 to 10
5
 Pa to cover the Knudsen 

number range 5.45 × 10
-3

 < 𝐾𝑛out < 545. The reduced flow rate (𝑞/𝑞Poiseuille) is plotted 

in Figure 4 as a function of 𝐾𝑛out. The q1 curve corresponds to the first-order 

correction. It departs from the Poiseuille solution for 𝐾𝑛out ≅ 0.02.  The q2 curve 

corresponds to the second-order correction. It departs from the previous one for 

𝐾𝑛out ≅ 0.1 − 0.2. Equations 19 and 20 correspond to the qgen curve. The latter 

follows the previous one till 𝐾𝑛out ≅ 0.5 and should feature the same agreement with 

experimental data as the second-order correction. Finally the qgen curve merges with 

the free molecular curve qfm for 𝐾𝑛out ≅ 30. 

 
Figure 3. Comparison of different approaches for the flow rate through a rectangular channel. The 

flow rate is reduced by the Poiseuille value. Flow conditions are given in the text. 
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For an axisymmetric channel, the same approach is used. The flow rate writes 

 𝑞 =  
𝜋  𝐻4  𝑝out

2

16 𝜇𝑅𝑇𝐿
×  𝑟𝑝

2 − 1  ×  1 + 𝐴1𝐾𝑛out +
𝐴2𝐾𝑛out

2

1+𝛽𝐾𝑛out
 . (21) 

with 𝐴1 =
8 𝛼1 𝜔 ,𝑎𝑢  

𝑟𝑝 +1
×

2−𝑎𝑢

𝑎𝑢
 and 𝐴2 = 𝐵 𝜔, 𝑎𝑢 ×

ln 𝑟𝑝

𝑟𝑝
2−1

  (22) 

and the consistence with the free molecular solution is achieved for 

 𝛽 =
𝐵(𝜔 ,𝑎𝑢 )

16
×

ln 𝑟𝑝

𝑟𝑝−1
×   

𝑃 𝐿/𝐻 ,𝑎𝑢  

𝐾 𝜔 
×

𝐿

𝐻
 −  

𝛼1(𝜔 ,𝑎𝑢 )

2
×

2−𝑎𝑢

𝑎𝑢
  

−1

. (23) 

As for the rectangular channel, the expression of B depends on the second-order model. 

For example, QHD equations result in 𝐵 𝜔, 𝑎𝑢 = 32π  𝐾(𝜔)2 𝑆𝑐  . 

2. CONCLUSION 

The expression for the flow rate through a rectangular or axisymmetric channel has 

been reminded, based on a continuum approach, including first- and second-order 

corrections to the Poiseuille solution. Emphasis was put on correct estimates of the 

different terms, as concerns their dependences on viscosity law (ω), gas-surface 

interaction (au), definition of mean free path and physical meaning of velocity slip. 

A physically sound molecular approach was applied in the free molecular regime and 

lead to a qualitatively different solution, the flow rate being proportional to the pressure 

difference rather than to the difference of squared pressures. 

Finally an interpolation formula has been proposed to cover the intermediate 

(transitional) regime. It requires no additional fitting. It should facilitate the 

interpretation of past and future experiments. 
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