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Abstract — The novel mathematical model for unified simulation both laminar and low-Reynolds
turbulent flow, including the bifurcation point, is described and tested. This model is based on the quasi-
gas dynamic equations, that differ from the Navier-Stokes system by the additional nonlinear dissipative
terms. In turbulent flow simulations these additional terms play the role of subgrid dissipation. The
results of simulations for a backward-facing step flow in 2D and 3D configurations are presented.

1. Introduction
LES models play an increasing role in numerical simulation of turbulent heat and mass transfer
for engineering applications. Here the quality of the numerical solution depends strongly on
the properties of the filter-type model, that is used to reproduce subgrid-type dissipation. The
most popular and robust model seems to be the Smagorinsky model [1] and its variations. In
this model the filter size is determined by the space step of the computational grid. The eddy
viscosity is assumed to be proportional to the subgrid-scale characteristic length, that plays the
role of the filter. Turbulent dissipative terms have the traditional mathematical form, similar
to the Navier-Stokes dissipative terms. However, this model cannot be considered as perfect.
Particulary, close to a wall the model is too dissipative, which produces difficulties in modeling
laminar-turbulent transition. Also the determination of the characteristic constants, needed by
the model, is not well-established.

In the present paper we describe a novel mathematical model, that can be regarded as a nice
alternative to existing filter models for LES methods and can be used for unified simulations of
both laminar and low-Reynolds turbulent flows. This model is based on the quasi-gas dynamic
(QGD) equation system, that generalizes the Navier-Stokes (NS) system and differs from it by
additional nonlinear dissipative terms. These terms include a multiplicative parameterτ which
has the dimension of a time. The additional dissipation appears in all gas dynamic equations
in the form of strongly non-linearτ -terms. The influence of additional terms is inessential for
the stationary flows of non-rarefied gases. But for strongly nonstationary flows and also for
moderately rarefied flows their contribution becomes essential, and in these classes the advan-
tages of QGD models were seen. In the numerical modeling theτ -terms manifest themselves as
effective regularizers, and corresponding numerical methods were tested for a number of heat
and mass transfer problems of laminar viscous gas flows, e.g. [2], [3], [4] and citations therein.

The first backward-facing step flow simulations in 2D configuration show, thatτ -terms pro-
vide the unified simulation of both laminar and low-Reynolds turbulent flows, including the
bifurcation point. Particulary, these terms stabilize the numerical solution in laminar flow, and
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play the role of subgrid dissipation for strongly nonstationary turbulent flow regime [5], [6]. In
the present paper this result is verified in 3D calculations.

2. Quasi-gasdynamic model
The physical background for the QGD equation system is based on a time-averaging technique
involving a small control volume, taking into account a corresponding small time interval. The
QGD system generalizes the NS system of equations but differs from the NS system by addi-
tional dissipative terms with a small multiplicative parameterτ ( e.g. [2] – [4] and citations
included). The QGD system has a form of conservation laws, and in the absence of external
forces in common notations writes as
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The mass flow density vectorjm, viscous stress tensorΠ, and heat fluxq are given by

jmi = ρ(ui − wi), wi =
τ

ρ

(
∂

∂xj

ρuiuj +
∂

∂xi

p

)
, (4)

Πij = ΠNSij
+ τρui

(
uk

∂

∂xk

uj +
1

ρ

∂

∂xj

p

)
+ τδij

(
uk

∂

∂xk

p + γp
∂

∂xk

uk

)
, (5)

qi = qNS i − τρui

(
uj

∂

∂xj

ε + puj
∂

∂xj

1

ρ

)
. (6)

whereΠNS andqNSi are the NS viscous stress tensor and heat flux vector, respectively. Eqs.4
- 6 show the additionalτ -terms, included in vectors of mass flux, heat flux and viscous stress
tensor.

The system (1) – (6) is completed by the state equation for a perfect gas, and with expressions
for the coefficients of viscosity, heat conductivity and parameterτ . Heat conductivity coefficient
æ and parameterτ are related through the viscosity coefficientµ by:
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wherePr is the Prandtl number,Sc is the Schmidt number,R is the perfect-gas constant, and
γ is the specific heat ratio. We use the power lawµ = µ0(T/T0)

ω for the viscosity thermal
dependence.

The entropy productionX for the QGD system is the entropy production for the NS system
completed by the additional terms inτ , that are the squared left-hand sides of the classical
stationary Euler equations with positive coefficients:
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Above equation proves the dissipative nature of the additionalτ -terms and the correctness of
the QGD model with respect to the second law of thermodynamic.

In the limit τ → 0, the QGD system reduces to the classical NS system. The QGD system
differs from the NS one by second order space derivative terms of orderO(τ), but for stationary
flows, the dissipative terms (terms inτ ) have the asymptotic order ofO(τ 2) for τ → 0. In
the boundary layer limit, terms inτ vanish, and both QGD and NS equation systems reduce
to Prandtl’s system. The entropy theorem for QGD system confirms the dissipative nature of
τ -regularizers.

The continuity equation (1) of the QGD system involves the spatial derivative of the pres-
sure, which makes it a second-order equation in space. Therefore, when standing the boundary
conditions, an additional as compared with the NS system boundary condition is required. This
condition is obtained directly from the condition for the mass flux densityjm (4) and the desired
velocity conditions on the boundaries. For example, in the problem below this additional condi-
tion has the form of the pressure condition∂p/∂n = 0, wheren is the normal to the boundary.
Initial conditions for the QGD system are the same as for the NS one.

In calculations parameterτ is defined as
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µ
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+ α

h

c
, (8)

whereh is the width of the grid filter (the mesh size in numerical computations),c =
√

γRT
is the local speed of sound,0 ≤ α ≤ 1 is a numerical coefficient to be determined, andh/c
is the time required for a perturbation to travel across a grid cell. In modeling rarefied flows
α = 0, for other casesα ∼ 0.5. Depending of the problem,τ -value may be estimated oth-
erwise, for example in atmospheric turbulent flows incorporating the experimental data for the
macrodiffusion coefficients.

In the last years a number of new gasdynamic models with nonclassical continuity equation,
namely the dissipative continuity equations, or so called two-velocity modes, were proposed
by, e.g., [7] – [11]. The possibilities of these models for turbulent flow simulations were widely
discussed, but newer verified in any practical calculations. Mention, that all these models differ
from the present QGD equation system, that can be regarded as the system of the same family.
Models [7]-[10] do not include the velocity derivatives in mass flux vector. The system [11]
includes the second time derivatives, that do not appeared in the QGD model.

3. Problem formulation and numerical implementation
The test problem considered here is a subsonic airflow behind a backward facing step, e.g.
[12, 13, 14] and citations included. The results of the QGD simulations in 2D formulation are
reported in [5] and [6]. Here the QGD results are completed and proved by 3D computations.

The results for 3D numerical calculations for Mach numberMa = 0.1, Re = 3500 for the
air flow with

γ = 1.4, P r = 0.737, Sc = 0.746, ω = 0.74,

are presented below. In cartesian coordinates computational domain (see Figs. 3 - 4) has the
dimensionsLx = 16, Ly = Lz = 2, with backward-step dimensionsHx = Hz = 1, Hy = 2.
We used the uniform space grids to resolve the vortex structures properely. The Reynolds and
Mach numbers are defined as

Re =
ρ0U0Hz

µ0

, Ma =
U0

c0

, (9)
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with densityρ0 and temperatureT0 at inlet, where the mean entrance velocity is

U0 =
∫

uxdy.

Boundary conditions are the following: left entrance boundary

ux = 6(2− z)(1− z), uy = uz = 0,
∂p
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= −12/Re,

right exit boundary
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step surfaces and lower plane
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∂f
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wheren is a normal vector to the boundary,s is a tangential vector.
For QGD calculations the explicit in time finite-volume method with central difference ap-

proximation for all space derivatives is used, whereτ terms provide the stability of the numerical
solution.

For 3D flows several improvements reducing computing time were made for the current soft-
ware implementation. Firstly, entire necessary partial derivatives are computed by one time for
each node of the finite-difference scheme due to utilizing of these derivaties in the conservation
laws for gas-dynamics parameters namely density, velocity and pressure, in the same manner.
Secondly, gas-dynamics values at half-integer mesh nodes are computed once per time step.

4. Computational results
Figs.1 consequently shows the temporal evolution of the velocity for laminar (Re=300), transi-
tional (Re=600) and low-Reynolds turbulent (Re=3500) regimes in 2D calculations.
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Figure 1: Time-evolution ofux atRe = 300, 600 and 3500. 2D calculations

The normalized lengthsLs of the separation zones calculated forα = 0.5 and 0.3 are shown in
fig.2, 2D results. Both solutions are mutually consistent and are consistent with the experiments
for laminar flows,Re < 600. The solutions also agrees with experiment for turbulent flows,
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Figure 2: Separation zone length. Dash-lines - calculations [5], the full line - data [12].

Re > 800. The calculatedRe values for the transition point slightly depend on the mesh step
h (h = 0.075, 0.05 and 0.03) andτ values, but nevertheless qualitatively correspond to the
experimental predictions of Armaly et al [12].

The uniform numerical method with only one free parameterτ is used for both laminar and
turbulent regimes. Calculations for laminar flows show that factorα acts only on the stability of
the QGD algorithm: withα → 0, the numerical time step must tend to zero to ensure stability
of the method. However the solution does not depend onα. On the contrary, for strongly non-
stationary turbulent flows, the numerical solution slightly depends onα ( Fig. 2). Both solutions
are mutually consistent and are consistent with experiment for laminar flows withRe < 600.
The solutions also agrees with experiment for turbulent flows withRe > 800. Details of 2D
calculations are presented in [5]. Equation system and numerical results for incompressible
flows in comparison with PIV measurement are reported in [4], [15].

The validity of 2D calculations were proved by 3D calculations, that were performed for
Re=3500 forα = 0.5 in (8) and grid stepsh = 0.2, 0.1 and 0.05 with non-dimensional time-
steps equal to∆t = 0.005, 0.0025 and0.001, respectively.

In a coarse gridh = 0.2 the subgrid dissipation proportional toτ ∼ h suppresses the oscil-
lations and the flow evolutes to a stationary picture. The grid stepsh = 0.1 and0.05 allow to
obtain the nonstationary regime. In Figs. 3 the examples of instantaneous stream functions for
developed flow are shown. Fig. 4 presents the 3D time-averaged flowfield (h = 0.1).

The stream-functions in symmetry plane for the time-averaged flow is shown in Figs. 5 for
space stepsh = 0.1 and0.05 (left). For comparison the similar results for 2D calculations
are shown in the same figure (right), both obtained forα = 0.5. It demonstrates that for
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Figure 3: Instantaneous 3D stream functions in backward-facing step flow, fragments corre-
sponding to different timest.

Figure 4: Averaged 3D stream functions in backward-facing step flow.

the symmetry plane the time-averaged 2D and 3D calculations give the similar results. When
decreasing the space step more fine details of the flow structure are resolved – for the finer grids
the additional inner vortex structures behind the step are seen in 2D and 3D formulations.

Figs. 6 show the sequence of the slides with stream-functions for the time-averaged flow in
the sectionsx = 3, 5, 5, 9, 11, 12.5 and13, for h = 0.1. The symmetry of the flow field related
to a planey = 1 is seen. Newetheless, the instantaneous 3D flowfields are non-symmetrical,
see Figs. 3.

Fig. 7 presents the onset and the evolution ofuy in the symmetry plane forx = 5, 10 and
15. It is seen the development of the fluctuations of the transversal velocity with increasing of
the time and the distance from the step. Here the onset of the fluctuations starts att ∼ 1500.

Figure 5: Left: 3D calculations,h = 0.1 (up) and0.05 (down). Right: 2D calculations,h = 0.1
(up) and0.05 (down)
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In calculations with smaller grid step (h = 0.05) the transversal oscillations arise earlier, at
t ∼ 200.

Figure 6: Slides forx=3, 5, 7, 9, 11, 12.5, 13 and 15.
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Figure 7: Time-evolution foruy in the symmetry plane forx=5, 10 and 15,z=0.5.

The time evolutions for velocity componentsux, uy anduz in the point placed behind the
step with coordinates (2.5,0.5,0.5) are plotted in Figs. 8 forh = 0.1 calculations. The fragments
of the evolutions forux anduy are seen in Fig. 9. Compared with 2D case (Fig. 1) one can see
the additional low-frequency oscillations related with the third dimension of the computational
domain.

Figs.10 presents spectra forux and uz velocity components. According to these figures
the main Strouhal frequencies obtained here aref1 ∼ 0.1644, corresponding to a time-period
∆t ∼ 6, andf2 ∼ 0.004 (∆t ∼ 250). f1 value is close to the main frequency in 2D flow ([5]
and [6]) and last picture in Fig.1), while thef2 value is related with the thirdHy dimension of
the channel that is taken into consideration in the present calculations.

5. Conclusions
The obtained results for 2D and 3D backward-facing step flow show the possibilities of the
QGD model as a filtered method for numerical simulation of turbulent heat and mass transfer
in gasdynamic flows including the transition regime. This new filtered method must be tested
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Figure 8: Time-evolution forux, uy anduz.

Figure 9: Fragments of time-evolution forux anduy.

for other gas dynamic turbulent flows in order to clarify the domain of validity and the values
of regularization parameter for practical simulations.
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