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INTRODUCTION

In [1-6] two interrelated systems of equations were proposed and studied, namely, the quasi-gasdy-
namic (QGD) and quasi-hydrodynamic (QHD) equations. These systems have proved highly effective for
the numerical simulation of compressible and viscous incompressible flows.

A number of techniques for constructing the QGD and QHD systems were presented in [1—6] (see also
the references therein). The QGD equations were first constructed in 1985 on the basis of a kinetic model
involving free-molecular motion and Maxwellization. Later, they were derived using a difference scheme
for the Boltzmann equation, a regularized Boltzmann equation in the BGK form, and conservation laws
written for a small stationary volume of gas. However, all these methods for constructing the QGD equa-
tions are not rigorous. In contrast, the QHD equations were rigorously derived by Yu.V. Sheretov in 1994
as based on the classical postulates of fluid dynamics (see [3, 6]). Later, he constructed these equations
approximately with the use of conservation laws for a small stationary volume. The rigorous derivation of
the QHD equations implies that the Navier—Stokes equations can be obtained as a consequence of the
QHD equations.

An analysis shows that QGD and QHD systems and the Navier—Stokes equations are closely interre-
lated and do not contradict each other. Specifically, the correspondence between certain exact solutions
of the QGD and QHD systems and the Navier—Stokes and Euler equations was analyzed in [3, 6]. In
[7, 8] exact solutions of the QHD equations were constructed that satisfy the Navier—Stokes and Euler
equations.

In this paper, we propose a new approximate method for constructing QGD and QHD equations. The
method is based on the averaging (or smoothing) of the classical Navier—Stokes equations over a short
time interval and has a number of advantages over available unrigorous approaches. Specifically, with this
method, all previously constructed versions of the QGD and QHD equations can be derived in a rather
simple unified manner. Moreover, the method explains the nature of the arising regularizing additions and
can be used to expand the family of QGD and QHD equations.

Note that the various time-averaging techniques are a well-known method for transforming equations
in mechanics. Specifically, time averaging is used to derive the Reynolds equations for turbulent flows
(see [9]).

Below, the averaging approach is described in detail and the corresponding assumptions are formu-
lated. First, smoothed equations are constructed in the simplest case of viscous incompressible flows.
Then we sequentially construct the QHD and QGD equations for compressible gas flows. Mathematically,
the approach is somewhat similar to the transformations performed for the first time in the finite volume
method (see [3, 6]) and later developed in [4, 5], since the time averaging of gasdynamic fluxes was implic-
itly present in this method.
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1. QHD EQUATIONS FOR VISCOUS INCOMPRESSIBLE
FLOWS IN THE OBERBECK—BOUSSINESQ APPROXIMATION

The viscous incompressible Navier—Stokes equations in the Oberbeck—Boussinesq approximation
have the form (see [9, 10])

divu = 0, 1)
%+div(u®u)+vp = divllys — g7, )
aa_{ +divuT) = kAT. (3)

Here, the unknown quantities are the velocity u(x,7), the pressure p, and the temperature 7. The density
of the fluid is assumed to be constant. The viscous stress tensor is defined as
[Iys =V(VOW+(V® u)T]. 4)

The kinematic viscosity v, the thermal diffusivity k, and the coefficient of thermal expansion [3 are con-
stant and positive; g is the acceleration due to gravity.

The equations are written using the standard tensor notation. Specifically, (a ® b) is a second-rank ten-
sor invariant obtained as the direct dyadic product of vectors a and b.

After averaging system (1)—(3) over a short time interval Af and computing the integral average over
the interval (¢, t + At), the continuity equation becomes

t+At 1+At
L diva@ehdr' = divl L ' L= divl L u@®Ar | = diva() =
A I divu(t')dt' = div {At J. u(t")dt } =div [At u(? )Al} = divu(@*) = 0. 5)
t t

Here, we took into account that spatial differentiation is independent of time integration and used the
mean-value theorem to evaluate the time integral. Thus, u(r*) is the velocity at some intermediate time ¢*,
where t < * <t + Af.

Assume that system (1)—(3) has a sufficiently smooth solution. Assuming that the averaging interval is
short and the variation in the velocity over the time At is small, u*(f) can be represented as the first term
of the Taylor series expansion:

w*() = u(r*) = u@) + r?. (6)
t
Here, 0 < 1 < At is a time smoothing parameter.
The time derivative in (6) is found from the nonconservative form of Eq. (2):

%+uVu+Vp — divITys — BeT. 7
Omitting the O(v) terms, we obtain
%z—uVu—Vp—BgT. (8)
Thus, the velocity at the intermediate point 7* is represented as
Ut =u-—w, )
where
w=1tuVu+Vp+pgT), (10)
and the time-averaged continuity equation is
div(u —w) = 0. (11)

Consider momentum equation (2). The first term can be transformed in two ways, specifically,
1+At

1 (0 v ut+AD—u@) ou  Atd*u >
= | Su@ydr =122 =200 0 AT U, Ay 12
At !6tu( ) At ot 2 ot (Ar) (12)

or, using the theorem on the differentiation of an integral with variable limits (see [9]),

t+At

1 O vy OUu¥ 6( au)
— | Zu@)dt' =" ==|u+1=). 13
At JatU() or o\ ot (13)

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 51 No. 11 2011



TIME AVERAGING AS AN APPROXIMATE TECHNIQUE 1975

In both cases,
t+At

1 O .. OUu* o’u
= | Lueyar = + 0] 9 Y . 14
At ,Jatu( ) ot (Tatzj (9

The convective term is also averaged over the short time interval and is transformed according to the
mean-value theorem with the use of relation (9):
t+At

1 . Vg % _ 1. * £\ _ A _ _
A~ ;[dlv(u®u)dt =divlu ® u)* = divu@™) ® u¢¢™)) = divj(u—w) ® (u —w)] (15)

=div(u ® u) —div[(w ® u) + (u ® w)] + div(w & w).
Here, the last term is of order 0(12).
Assume that the variations in pressure and temperature over the averaging interval are negligibly small;
i.e., let
pt) = pt), T =T(@). (16)
While averaging the viscous stress tensor, we retain only linear terms and discard those of order O(tV).
Then

H?ils = Iys.
Neglecting the quantity ~10° / ot in (14), we obtain the averaged momentum equation
g_u +divu ® u) + Vp = divllyg + div[(w @ u) + (u ® w)| — g7 (17)
t
In a similar manner, using assumption (16), we obtain the smoothed temperature equation
aa—T + div(u*T) = kAT. (18)
t
Using the formula for smoothed velocity (9), we obtain
aa—T +divuT) = div(wT) + kAT, (19)
t
Thus, the system of smoothed equations governing viscous incompressible flows has the form
div(u —w) =0, (20)
ou +divlu ®u) + Vp = divllyg + divf(w®u) + (u ® w)| — g7, 21
ot
%—T +div(uT) = div(wT) + kAT, (22)
t
where
w =1tuVu+ Vp+BgT). (23)
On introducing the mass flux density, which is equal to the time-averaged velocity
jm =u—-w, (24)
system (20)—(23) is rewritten according to [3—6] as the differential conservation laws
divj,, = 0, (25)
g—l;+div(jm ®u) + Vp =divll - BgT, (26)
aa—T +div(j,T) = kAT, 27)
1

where the viscous stress tensor is given by
IM=Il+u®w. (28)
Thus, we have obtained the QHD equations which were previously derived in [3—6].
The following assumptions were used to construct a time-averaged system of equations.
1. The original system has a sufficiently smooth solution.

2. When the mean-value theorem is used, the smoothing parameter 7 is the same for all terms and all
equations.

3. The quantities of order 0(12), O(tv), and O(tz) and the terms of the form 18? / ot” are small.
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4. Only the flow velocity (6) varies over the smoothing interval, while the variations in the pressure and
temperature are negligibly small (see (16)).

Smoothed kinetic energy balance equation. Kinetic energy dissipation for system (1)—(3) is described by
the equation

2 2
%(“ﬂ +div {u [“3 + p] - HNSU} = (29)
with the dissipation function
D= Hst_VHNs (30)

By analogy with the above derivation procedure, the smoothed form of Eq. (29) is given by

3 u>:<z w2 .
o +div|u* 7+p —IIygu™ | = —@. 31)

Using u* given by (9), we rearrange the left-hand side of (31) and omit the second-order terms to obtain

2 2 2 2
g[“?) + div {(u —w) (@ + p] - HNsu} - %(“3) + div[(u —w) (“? + pj Tygu— u(wu)} — _®. (32)

Thus, the time averaging procedure preserves the dissipative character of the equation, but no term of the

form w2/ T is added to the dissipation function, which is explained by the lack of rigor of the derivation
technique. Such terms were obtained in [3, 6], where the kinetic energy equation was mathematically rig-
orously derived from the QHD equations for a viscous incompressible fluid.

2. QHD EQUATIONS FOR VISCOUS COMPRESSIBLE GAS FLOWS

The viscous compressible Navier—Stokes equations [9, 10] are written in the index form

op, 0
-+ —pu; =0, 33
ot 0Ox; P 93)
opy; . 0 0 0
o puu +—— F + LTl (34)
or ax, D T o PP Ty
o (uf o (uf p). @ G
Lt |+ —pu| L+e+E |+ —qns = pu;F;, + —Tlygu; + 0. (35)
619( ] le»p (2 o 6x,»qNs p o, Nsiild 0)
System (33)—(35) is supplemented with the equations of state
p=pp.T), e=¢pT) (36)
and with the following expressions for the viscous stress tensor and the heat flux:
0 0 0 0
Mysy =W ——u; +—u; — 8, , ; =—k—T. 37
NSij [Gx ox, 3% 5 . kJ qnsi = ox, (37)

The unknowns in system (33)—(35) are the density p, the velocity components u;, the pressure p, and the
internal energy €. The viscosity P and the thermal conductivity coefficient k£ are positive, F; are the com-
ponents of the external force, Q is the heat source strength, and 6, is the Kronecker delta.

The time averaging procedure for this system is similar to that used above. Specifically, we assume that

only the flow velocity u; varies over the averaging interval Az, while the variations in the density and pres-
sure are negligibly small. Additionally, the variations in the external force and heat source strength are also
assumed to be small. In other words, while computing the time averages of the integrals, we set

pr=p Pt =p wfmu+iSh F-F Q'O (38)
t
The time average of system (33)—(35) is written as

op. 0 _ x
—++—puy; =0, 39
ot Gx,p %)

8pu * 0 0

1 +_ u’u +_ F + H iis 40
o o p( ) ox, pP=pP ox NSij (40)

J Xj
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o |u” IR L ) I N "
ap 74’8 +a7pui 74‘8‘}‘5 +a7qNS,=puiE+67HNSijuj +Q. (41)

The velocity u* at the shifted point is computed using (38), where the time derivative is determined
from the nonconservative Euler momentum equation

o 0, 10
—+u; +=—p=F,. 42
o o, pax,” “2)

Thus, up to second-order terms in T, we have

u =u; + r% =u —w, (43)
ot
where
=Y ou; L+ 2 p—pF | (44)
p Ox; 0x;
Introducing the notation for the mass flux density,
= pu; —w), (45)
we obtain the time-averaged continuity equation
op, 0 .
++—=j,.=0. (46)
ot ox,’
Let us transform the momentum equation. The first term is approximately written as
opui _ 0 (u.H%)z%. (47)
ot 6t ot ot
The convective term is transformed as follows:
) du; ou;\ _ 9
—p(u;u ) =— (u +1— )(u +1— | =——p; —w)u; —w;)
ox, ,p a5 )T ™ Y
(48)
= —p(u,uj —UW; — ;W +wWw;) = iujjm,- —ipu,wj.
Here, we discarded the second-order term ~ ~w,w ;.
Thus, the time-averaged momentum balance equation is
opu; , 0 0 0
—+ = ju, +—p=pF+—=1I1,, (49)
or o g P TP o M
where the viscous stress tensor is given by

Total energy balance equation. By analogy with the previous consideration, the time derivative in the
approximation remains unchanged:

o |u” o (uf
~=p|l—Lt+eg]|. (51
arp( j o’ [ 2 )
The work of the external forces is written as
Puz‘*Fi = pu; —w)F; = j,F. (52)

The convective term is rearranged as

*2
ipu G yes? ip(u,'—w,-) = w) W)’ +e+L
p) Ox; 2

ox; 2 p
2 (53)
0 D 0 0 . |4 D 0
=—pu;, —w; +e+5 |+ =—pU; —w)(—uw,) = —j.| —+e+= | —=puuw;)+0ww)).
axip( )(2 p] 3 ip( ) (=u;w;) 8x,j (2 p} axip( Wi) +O0ww))
Thus, the smoothed energy equation has the form
ap '2"'8 +ijmi u_i2+8+£ +inSi=jmiE +£Hij”; +0. (54)
ot Ox; 2 p) Ox; Ox;
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Angular momentum balance equation. This equation for Navier—Stokes system (33)—(35) has the form

g[x x pu] + div(pu ® [x x u]) = [x - pF] + ai[x X Pusye) (55)
where l

P =—pl +Tlys (56)
is the internal stress tensor, Pys; denotes the portrait of the tensor Pyg in the basis (e, e,, e;), summation is

implied over repeated indices (i, j), and [/ is the unit tensor. Equation (55) is a consequence of the momen-
tum balance equation (34) in Navier—Stokes system (33)—(35); i.e., it can be derived from the latter with
the help of identity transformations.

Equation (55) is averaged over time as follows. By analogy with the above presentation, only the term
with the divergence operator is transformed in Eq. (55), specifically,

div(pu @ [x x u]) = div(pu* & [x x u*]) = div(p(u — w) @ [x x (u —w)])

(57)
= div(j, ®[x x u]) — div(pu ® [x x w]) + O(W>).
Thus, the averaged angular momentum balance equation is
Q[XXpll]-i—diV(jm R[xxu]) = [X-pF]+i[xx}’,je,-j, (58)
ot ox;
where
P=-pl+1l\s+pu®w. (59)

Equation (58) (or the angular momentum theorem) was presented in [3, 6], where it was shown that
this equation holds identically under the momentum balance equation (49), as required by the postulates
of classical fluid mechanics.

Thus, the system of QHD equations (44)—(46), (49), (50), (54), and (58) with closure (59) is approx-
imately derived by averaging the classical Navier—Stokes equations over time.

Entropy balance equation. The behavior of the entropy

Dy

2
S | div(pus) = div(kﬂ) 4 k(ﬂ) L2 (60)
ot T T T
with the dissipation function
d = M 61)
2

Here, [Tyg: [I\g = sz:l (ITys);(ITys); is the double scalar product of two identical tensors, R is the gas

constant, vy is the ratio of specific heats, and ¢, is the heat capacity of the gas at constant volume.

Formally smoothing this equation over time leads to the velocity in Eq. (60) replaced by its smoothed
value:

u—->ut=u-—-w (62)
Thus, Eq. (60) becomes
2
S, diy(j, ) = div(kﬂ) + k(ﬂ) + 2 (63)
ot T T T
In contrast to the entropy equation rigorously derived in [3, 6] for the QHD equations, the dissipation
function in Eq. (62) lacks the addition pw” /1.

3. QGD EQUATIONS FOR VISCOUS COMPRESSIBLE GAS FLOWS

We again average system (33)—(35), but now all the gasdynamic parameters (i.e., the density, velocity,
and pressure) are assumed to vary over the short time interval Af. Proceeding as before, we denote the time
averages of quantities by *. Then averaging system (33)—(35) yields

op* . 0
P42 (pu)y =0, 64
ot 0Ox; (puy) (&%)
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6(pu) %, O ¥, 0 =
(p“ U; ) + _17 = (pF) + HNSI s (65)
ot 8 X ox; ox; 4
0 { ( RN WP\, e
p| +8ﬂ +—[pu ( ’ +8+—ﬂ + gt = uF)* + - kgu + 0%, (66)
ot ox 2 p 0x; ox; Y
We use the following simplifying assumptions:
op op i Ou;
f=pt+1t, prt=p+tE, ui=u+1— 67
prEpRILL P E AT o (67)

Ex = F;, and Q>l< =0.
Restricting our consideration to the first-order terms (i.e., neglecting the terms of orders o(%) , O(t),

and O(tk)) and omitting terms of the form 10’ / dt” while computing the time derivatives, we find that sys-
tem (64)—(66) becomes

dp ., 0 ( 0 )

o \PUit 0, 68
ot 6x, P T pu (68)
opu;

gt”z +6i'[(pu +'c§ pu)u +TpY; —u } ( ) ( +r§p)F, +£HNSU, (69)

J J

2
Qp 4ie +i (pui+ra ’+8 2 +rpu[u —u; +8 81 lﬁ_pj
or \ 2 ox; 0 p ot Otp pot

0 ( 0 ) 0
+—qnsi =|pu; + 1 u | F; + —Tlygiu; +
aquS p 8p 8 Nsiildj 0.

Continuity equation (68) is transformed as follows. The tlme derivative is found from the Euler momen-
tum equation

(70)

i

opu; 0 0
—Lt=——Dpuu; ——p+pkF. (71)
or  ox, M oy, PTP
Substituting this expression into (68) yields
op, 0 0 0
£+ —=|pu; — 1| =—puu; +—p—-pF, || =0. 72
ot 6x[p (axjp ! ﬁx,p P ﬂ (72)
Introducing the notation
w; = I[ipuiuj +ip - pE]: Jmi = P —wy), (73)
plOx; 0x;
we obtain the time-averaged continuity equation
ap 0
£+ 2 =0 74
ot 8x, J 7%

To transform the momentum and energy equations, we use the Euler equations and differential identities
following from them. For an ideal polytropic gas with the equations of state

p=pRT, e="L (75)

these identities are

01,0110, _ (76)
otp ox;p pox;
B o .18
“utu,—~—u+-—p-F =0, 77
o T o, 7
Oy 0420, Q_ (78)
ot ox; p Ox; p
9w L pryp v, —-10=0. (79)
ot ox; ox;
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Let us transform momentum equation (69). Using (73) and identities (77) and (79), we obtain

opu; +i{(pu, —PpwWu; +1pUY; [—u iu —lip + Fjﬂ
ot  0Ox; ox; ’ pOx; (80)
0 0 0 0 0
+—|p+rt|u— —u;+(y—-1 —1—pu; | F; + —TI\g;-
ox, {p ( o) p- yp@x, (v )Qﬂ ( 3 ip ) ox, NSij
Thus, the smoothed momentum equation is written as
opu; , 0 . 0 0
l+_ miuA+_ = E+_Hl’ 81
or ax, " T o P TP T, Y &1
where the viscous stress tensor is given by
I1; = g + tpy; ukiu +lip F; | +19, 0 p+ypiuk—(y—1)Qj (82)
Oxy, pOx; 6 0x;,
and
_ 0
Py =P =T PU;. (83)
ox;
To transform the total energy balance equation (70), we use all four Euler identities. As a result,
2 2
Qp e +ijm,- Yie4l +iﬂ:pu,u —U —— 0 u; —liJer
or \ 2 ox; 2 p) Ox; 0x,, pOx;
—irpu l(u,(ip+ypiu -(y-0)0O +—rpu (—uk s———uk+Q (84)
axt P a X axl X paxk p
0 01,10 0 0
+—1pu;p| Uy —=+-—"—uy |+ —qns; = JmiF; + —I\s;u; + 0.
ox; P p( kaxkp pOx, J 8x,»qNS Ox; NS
Combining like terms gives the time-averaged total energy equation
2 2
0 o . |y )4 0 6
-+ + < Jmi —+e+ +—q = m1E+ l + 0, (85)
arp( j ox,” [2 pj o, 1 = Imibi 4 Mty + €
where the heat flux is given by
4 = dnss — TPU [uk Dot pu, 2L QJ (86)
0x;, 6x P p

The time-averaged angular momentum balance equation is derived in a similar fashion and coincides
with the equation obtained in [3, 6] as an exact consequence of the QGD momentum balance equation.

Indeed, under the assumptions made above, smoothed equations (55) and (56) become

%{x x pu] + divpu ® [x x u])* = [x - pF]* + ai[x x Pl ;] (87)

where I
Pﬁs =—p*l + 1l = —pl +tI[(u- V)p + ypdiva — (y — DO] + I1ys, (88)
[x - pF[* =[x - p*F] = [x - (p — tdiv(pu))F]. (89)

The convective term in (87) is transformed using the relations
(pu @ [x x u])* = (pu* @ [x x u] = j,, @[x x u] + pu & [x x w*]

90
=j, @xxu]l—tu®[x x[p(u-Vyu+Vp-pF|]. ©0)
Thus, the smoothed momentum balance equation has the form
—[X><pll]+d1V(_|m®[X><ll])—[X p*F]+6 [x x Pye;l, 1)
xl
where
P=—pl+Tly+Tu®[pu-Viu+Vp—pF|+ti[(u-V)p+ypdiva — (y — 1)Q] 92)

The smoothed Navier—Stokes equations thus constructed coincide with the QGD equations obtained
in [3—6] by different approximate methods.
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According to [11], the QGD equations (73), (74), (81)—(83), (85), and (86) can be extended to gases
with the general equation of state (36) by making the substitutions

wope, y-1-v,-1, (93)
in the last Euler identity (79), which leads to the corresponding substitution in the second bracket of (82).
The speed of sound and the ratio of specific heats in (93) are calculated as

2 _op  T©@p/oT) _ op/oT
G ="+—"—"", Yo=—"_-+L
op p0g/0T poe/0T

To conclude, the dissipation function in the entropy balance equation (60) for the QGD system with
external forces and heat sources (see [5]) is given by

2 2
D = M+ rp(ukiui +lip - F,j +m(uii8 +£iu, —QJ + Q(l - TM) (95)
2u 0x, p Ox; e\ Ox; pox; 2p 4p
As in the previous case, we fail to obtain terms ~7 in (95) by approximately averaging the classical
entropy equation over time. Such terms are obtained when an entropy balance equation of form (60) is
derived directly from the QGD equations; i.e., the operations of averaging and deriving the entropy equa-
tion on the basis of the continuity, momentum, and energy equations are not commutative.

(94)

CONCLUSIONS

A new approximate method for constructing the QGD and QHD equations was presented that is based
on the smoothing of the classical Navier—Stokes equations over a short time interval. The method is
closely related to the approximate procedure for deriving the QGD and QHD systems [3—6] consisting of
the integration of the classical equations over a small stationary volume and the subsequent estimation of
the fluxes crossing its boundary.

The method can be used to construct the continuity, momentum, angular momentum, and energy bal-
ance equations for the QHD and QGD systems. However, the dissipation function in the resulting entropy
balance equation for the QHD and QGD systems does not involve additional terms ~7T, which are inher-
ent in the these systems. This result is explained by the lack of rigor of the method for constructing the
QHD and QGD systems.

The new method for constructing the QGD and QHD systems is more transparent and less cumber-
some than the previously used techniques. Moreover, all the versions of these systems, including the QGD
and QHD equations for viscous incompressible flows, can be derived in a unified manner. The present
approach can be used to obtain a whole family of smoothed QGD- and QHD-type systems based on var-
ious fluid dynamics equations. Specifically, the above method was used in [12] to derive smoothed shallow
water equations. In [13] this method was applied to obtain new versions of the QHD equations for com-
pressible plasma flows in an electromagnetic field, including the averaging of a magnetic field. The first
versions of such systems were presented in [6]. It is of interest to develop this approach to two-fluid mag-
netohydrodynamics.
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