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The quasi�gasdynamic (QGD) approach makes it
possible to construct convenient and reliable differ�
ence schemes for the numerical solution of various
gasdynamic problems. Its description can be found in
[1–3]. More specifically, in [2, Chapter 9] (see also
[4]), the Boltzmann kinetic equation for a mixture of
monatomic gases [5] is used to derive and test QGD
equations for binary mixtures of nonreactive ideal
polytropic gases.

In this paper, we analyze and expand the capabili�
ties of the QGD approach in this area. The original
equations from [2] are rewritten as conservation laws,
which are more conventional in viscous gas dynamics
and convenient for discretization. Additionally, an
external force and a heat source are taken into
account. We briefly discuss the parabolicity of the sys�
tem in the sense of Petrovskii, which ensures that the
system is well defined. An entropy balance equation is
derived, and the entropy production for a gas mixture
is shown to be nonnegative, which ensures that the sys�
tem is physically consistent (but does not hold in all
available descriptions of gas mixtures). Importantly, to
achieve the latter property, the expressions for the
exchange terms in the total energy balance equation
(initially derived only for monatomic gas mixtures) are
properly generalized. Additionally, we introduce a
simplification of the QGD system for binary mixtures,
which is referred to as a quasi�hydrodynamic system
and is used for the numerical simulation of weakly
compressible sub� and transonic flows. At the end of
this paper, we present simplified barotropic versions of
both systems and derive a corresponding energy bal�
ance equation with nonpositive energy production.

The QGD system for binary gas mixtures a and b
(see [2]) consists of the following mass balance,
momentum, and total energy equations for the gas α:

(1)

(2)

(3)

where α = a, b. Here and below, ∂t and ∂i denote the
partial derivatives with respect to t and xi, the operators
div and ∇ are taken with respect to x (the divergence of
a tensor is taken over its first index), and ⊗ denotes the
tensor product of vectors.

The basic sought functions are the density ρα > 0,
velocity uα = (u1α, …, unα), and absolute temperature
θα > 0 of the gas α, which are functions of time t and
the coordinates x = (x1, …, xn), where n = 1, 2, 3. The
equations also involve the total energy, pressure, and
specific internal energy

of the gas α, which is assumed to be ideal polytropic.

Here, Rα =  (where R0 is the universal gas constant

and mα is the molecular weight) and the specific heat
capacity at constant volume  are positive constants.
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Additionally, we use the expression pα = (γα – 1)ραεα,

where γα – 1 = .

Moreover, τ = τ(ρa, ρb, θa, θb) > 0 is the relaxation
parameter, and Su, α and SE, α are exchange terms relat�
ing the equations for the gases a and b (their expres�
sions will be given below).

As was noted above, the QGD system (1)–(3) was
obtained only for monatomic gas mixtures, i.e., for

γa = γb = , and then was formally extended to the

case of any γα > 1 and γβ > 1. Note that the right�hand
side of Eq. (3) can be written more compactly by using
the formula

As was recommended in [2] (by analogy with the case

of a single gas), the multiplier  preceding the term

 is introduced into the right�hand side of

Eq. (3). Here, αPr > 0 is the Prandtl number (for αPr = 1,
the multiplier is not necessary).

According to [2, Subsection 3.3], Eqs. (1)–(3) can
be rewritten in the following form, which is more con�
ventional in viscous gas dynamics and convenient for
discretization:

(4)

(5)

(6)
with Fα = 0 and Qα = 0. Here, following a well�known
method from QGD theory [2, 3], we add given densi�
ties of body force Fα and heat source Qα ≥ 0 to analyze
the system in more generality. The sign ⋅ denotes the
scalar product of vectors.

In these equations, the viscous stress tensor Πα is
given by

(7)
where ΠNSα is the classical Navier–Stokes viscous
stress tensor
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with dynamic and bulk viscosity coefficients of the
form

(8)

and � is the unit tensor (of order n). Note that λα = 0

is obtained if the terms

are added to the right�hand sides of Eqs. (2) and (3) in

the case γα ≠ , respectively.

The auxiliary vectors wα and  are defined as

where ρα(uα – wα) is the mass flux density of the gas α.
The heat flux qα is given by the formula

with the thermal conductivity

(9)

Below, formulas (8) and (9) are replaced by the
general dependences

Importantly, since the exchange terms usually
depend only on the sought functions (but are indepen�
dent of their highest derivatives with respect to x and t),
the results of [6] that the QGD system for a single gas
is Petrovskii parabolic can obviously be extended to
QGD system (4)–(6) (in the corresponding analysis,
the system splits into nearly independent auxiliary
subsystems for a and b, which are related only in terms
of τ). These results ensure that the system is well posed
mathematically.

The entropy of the gas α and the entropy of the
mixture are given by the formulas
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where S0 is a constant.
Theorem 1. The following entropy balance equation

holds for gas mixtures:

(10)

in which the entropy production �s is given by the for�
mulas

(11)

(12)

where α = a, b and |�(uα)|2 is the square of the length
�(uα) (as an n2�dimensional vector).

If τ(γα – 1)  ≤ 1 with α = a, b and

(13)

then �s ≥ 0; i.e., the entropy production is nonnegative.
To prove this result, we consider the entropy bal�

ance equation for the gas α:

(14)

It is derived by multiplying momentum equation (5)
by uα, subtracting it from the total energy balance
equation (6), and dividing the result by θα. From this,
we obtain the last (exchange) term on the right�hand
side of (14). Formulas (11) and (12) with Qα = 0 are
derived in [2, 3]. A more concise derivation in a more
general situation (for the equations of state of a real gas
with Qα ≠ 0) is presented in [7]. Another form of these
formulas can also be found in [7]. Summing Eqs. (14)
over α = a, b, we obtain Eq. (10).

The standard exchange terms used in the kinetic
theory of gases (and applied in [2]) have the form [5]
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where ναβ > 0 is the collision frequency of gas mole�
cules α with gas molecules β; here, β = b for α = a or
β = a for α = b. Moreover,

(15)

with Cm = . Here, the multiplier

 is generalized as compared with [5] (where

only the case γa = γb =  was considered) so that the

balance equality holds for the exchange terms in the
total energy equation (see (18) below) (unfortunately,
this point was overlooked in some works, for example,
in [2, 8]). Note the equality

(16)

Below, we repeatedly use the balance equality

where Ncol is the total number of collisions between gas
molecules a and b.

In view of (16), for the above exchange terms, we
have

If  =  or, equivalently, γa = γb, then the

expression in square brackets is nonnegative (since ξ +
ξ–1 ≥ 2 for ξ > 0). Thus, condition (13) holds and the
entropy production is nonnegative. This means that
the considered system is physically consistent.
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Recall the following properties of the exchange
terms:

(17)

Moreover, under the same condition γa = γb,we have
another balance equality

(18)
Importantly, a further modification of the second

expression in (15),

ensures the property  =  (irrespec�

tive of the explicit expression for Cm in the formula
for Cmα). Then, for any γa and γb (rather than only for
equal ones), we have balance equality (18) and ine�
quality (13), which guarantee that the entropy produc�
tion is nonnegative. The modifications proposed
deserve a further physical analysis.

The QGD system of equations describes gas flows
in the entire range of velocities. In [1–3] a simplified
quasi�hydrodynamic system was presented for weakly
compressible sub� and transonic flows. Performing
similar simplifications in QGD system (4)–(6), we
obtain a quasi�hydrodynamic system of equations for
binary mixtures:
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where  = ΠNSα + ραuα ⊗ , – = κα∇θα, and
α = a, b. This system cannot be directly derived from
the Boltzmann equation. The Petrovskii parabolicity
of this system obviously follows from [9]. Theorem 1
also remains valid for it with the only difference being
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that the expression for Ξα considerably simplifies to

become Ξα = ΞNS, 1α +  + Qα, while the condi�

tion on τ (connected with Qα) is dropped.
In some applications, the systems represented can

be further simplified. Specifically, this is associated
with passing to the barotropic (in particular, isother�
mal or adiabatic) case and considering only the mass
and momentum balance equations (4), (5) or (19),
(20) supplemented with an equation of state pα =

pα(ρα), specifically, pα(ρα) =  with p1α > 0 and
γα ≥ 1. In the general barotropic case, the coefficient γα
in expression (7) for Πα is replaced by the first adia�

batic index Γα = . The Petrovskii parabolic�

ity of these systems follows from [9, 10].

Define the function P0α(r) := ,

where r > 0 and r0 > 0. Let the body force density is
such that Fα(x, t) = ∇Φα(x) + fα(x, t), where ∇Φα is the
density of the stationary potential body force and fα is
its perturbation.

Theorem 2. For the barotropic QGD system (4), (5),
the following energy balance equation holds:

(22)

where the potential and kinetic energies of the mixture
have the form
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is the energy production, and
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nonpositive: �E ≤ 0.
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This result is proved by summing the energy bal�
ance equations (see [11, Proposition 1]) for the gases a
and b and taking into account the exchange terms. The
important inequality �E ≤ 0 follows from (12) and (17).

For the barotropic QGD system (19), (20), Theo�
rem 2 remains valid with the only simplifications being
that the term –τdiv(ραuα) is omitted from the right�
hand side of (22) and the last term is dropped from the
energy production expression (23). Then �E ≤ 0 with�

out imposing any conditions on (ρα).

Note that all considered equations for binary mix�
tures, together with Theorems 1 and 2, can be directly
extended to the case of τ = τα.
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