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a b s t r a c t

We introduce amathematical model and related numerical method for numerical modeling of ideal mag-
netohydrodynamic (MHD) gas flows as an extension of previously known quasi-gasdynamic (QGD) equa-
tions. This approach is based on smoothing, or averaging of the originalMHD equation systemover a small
time interval that leads to a new equation system, named quasi-MHD, or QMHD system. The QMHD equa-
tions are closely related to the original MHD system except for additional strongly non-linear dissipative
τ -terms with a small parameter τ as a factor. The τ -terms depend on the solution itself and decrease in
regions with the small space gradients of the solution. In this sense the QMHD system could be regarded
as an approachwith adaptive artificial dissipation. The QMHD is a generalization of regularized (or quasi-)
gas dynamic equation system suggested in last three decades. In the QMHD numerical method the evo-
lution of all physical variables is presented in a non-split divergence form. Divergence-free evolution of
themagnetic field provides by using a constrained transport method based on Faraday’s law of induction.
Accuracy and convergence of the QMHDmethod is verified on a wide set of standardMHD tests including
the 3D Orszag–Tang vortex flow.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A variety of numerical methods to solve magnetohydrody-
namic (MHD) equations have been developed. We mention some
of them here—for example, the MacCormack scheme [1], the
Lax–Friedrichs scheme [2], theweighted essentially nonoscillatory
scheme [3], the piecewise parabolicmethod (PPM) [4], and its local
variant PPMona local stencil (PPML) [5,6]. All of themare equipped
with limiter functions for suppressing oscillations near disconti-
nuities and approximate Riemann solvers (e.g., the Roe solver [7],
theHarten–Lax–van Leer contact solver [8], or theHarten–Lax–van
Leer discontinuities solver [9]). For practical applications a number
of numerical codes have been developed—for example, for astro-
physical simulations, Flash [10], Enzo [11], Athena [12], and Cas-
tro [13].

An alternative model for numerical modeling of ideal quasi-
neutral gas dynamic flows with subsonic and supersonic velocities
under the action of an electromagnetic field is presented here. This
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model is based on smoothing, or averaging, of the original MHD
equation system over a small time interval that leads to a new
equation system, named a quasi-MHD (QMHD) system. From the
physical point of view, the time-smoothing looks natural, taking
into account that in physical experiments anymeasurements of gas
dynamic quantities need some nonzero time interval. The QMHD
system obtained here can be regarded as an extension of the quasi-
gas dynamic (QGD) equation system suggested and studied in the
last three decades for nonconducting gas flows [14–16].

The first version of the QGD equations was built in 1982 on the
basis of a simple kinetic model, which describes themotion of par-
ticles as a cyclic process consisting of collisionless expansion and
instantaneous relaxation to the Maxwell equilibrium. The finite-
difference schemes obtained were oriented at the simulation of
supersonic ideal gas flows. The corresponding differential repre-
sentation of the finite-difference equations obtained were named
the QGD system. Later the QGD system was derived phenomeno-
logically without use of kinetic models [17]. The entropy theorem
for the QGD system was established, and a family of new numer-
ical algorithms based on central-difference approximations of the
QGD system were suggested. QGD equations and associated nu-
merical schemes were used as a basis for further development of
the QGD approach for different gas dynamic problems. In particu-
lar, the QGD algorithms were built to describe viscid flows, weakly
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compressible and incompressible fluids, free surface flows in the
shallowwater approximation, andMHD flows. We skip the full list
of publications here because it is too long, andwe direct the reader
to three books, where all the main progress in QGD theory is col-
lected [14–16].

The QGD equations are closely related to the Navier–Stokes
equation system, and can be written in the form of the
Navier–Stokes system except for additional strongly nonlinear
terms. These additional terms contain the second-order space
derivatives in a factor of a small parameter τ that has the dimen-
sion of time. These τ -terms bring an additional nonnegative en-
tropy production that proves their dissipative character [15,16].
The last feature is a critical point for the mathematical description
and numerical methods in fluid dynamics. The τ -terms depend on
the solution itself, and decrease in regions where space derivatives
of the solution are small. In this sense, being applied for the numer-
ical simulations, the QGD system could be regarded as an approach
with a special kind of adaptive artificial dissipation.

A family of finite-difference homogeneous schemes based
on QGD equations was constructed. Efficiency, accuracy, and
simplicity of the constructed algorithms are achieved by regular-
ization by τ -terms, which are included in all equations of the sys-
tem. The QGD schemes are constructed by application of a central-
difference approximation for all space derivatives, where τ -terms
contribute to the stability of the numerical solution.

The applicability of the QGD algorithm was demonstrated
in [18], for example, where stability and accuracy are studied
numerically for 10 classical Riemann test problems. The results
revealed that the numerical solution monotonically converges to
a self-similar one as the spatial grid is refined. Application of QGD
algorithm for complex multidimensional gas dynamic problems
can be found in [19–22], for example. The QGD algorithms are well
suited for unstructured computational grids [15,23], and are quite
naturally generalized for the parallel realization with the domain
decomposition technique in order to speed up computation; see,
for example, [14,15].

The advantages and disadvantages of the QGD approach for
simulation of gas flows are both related to the τ -terms present
in the equations. τ -terms have a stabilizing effect, which allows
one to construct simple numerical algorithms. The possibility to
tune the τ parameter allows one to simulate inviscid flows, where
τ -terms are related to space discretization; viscous and rarefied
flows, where τ -terms are related to the free path length; turbulent
flows, where τ -terms play a role in subgrid dissipation. The impor-
tant advantage of the QGD approach is the possibility to simulate
a wide range of flows on the basis of the similar numerical algo-
rithms.

The disadvantage of the QGD approach is the awkwardness
of the equations compared with the Navier–Stokes-like systems.
When τ -terms are computed on the basis of the space discretiza-
tion, the QGD algorithm has only first-order space accuracy, which
in some cases requiresmore finely spaced grids comparedwith the
higher-order methods.

It is difficult to define the domain of applicability of QGD equa-
tions in comparison with Navier–Stokes equations. As the QGD
system is closely related to the Navier–Stokes equation system,
both systems have a number of common exact solutions. It was
shown that τ -terms in QGD equations have the order of τ 2 for sta-
tionary flows. So the advantages of the QGD approach should be
searched for in simulations of the rarefied flows, where τ -terms
are not small, and for strongly nonstationary (turbulent) flows.
In particular, it was shown that QGD equations allow one to de-
scribe rarefied gas dynamic flows with larger Knudsen numbers
compared with Navier–Stokes equations [15,24]. The successful
application of QGD equations for direct numerical simulation of
the laminar–turbulent transition in subsonic gas flows is presented
in [25]. Another problem that was solved only in the framework of
the QGD approach is the simulation of strongly underexpanded jet
flow [26].

The mathematically important property of parabolicity of QGD
equations for the general equation of state was proved in [27]. In
the same article, an equation for entropy balance was obtained in
the case of absence of heat sources. The heat source was consid-
ered in a later article [28], where the entropy balance equationwas
reformulated and some simulations of real gases were performed.
Correctness of the Cauchy problem for QGD equations and its lo-
cal solvability were proved [29]. Linearized stability of equilibrium
solutions was proved in [30]. The latter contains a mathematically
strict investigation which reveals the dissipativity of QGD equa-
tions and the smoothing properties.

The first variants of the QMHD equationswere obtained in 1997
(e.g., [16]), where contrary to the present article, themagnetic field
is taken as an action of an external force without time smoothing.
The entropy theorem for the QMHD systemwas proved and exam-
ples of analytical solutions for the QMHD systemwere obtained for
flows in a plane horizontal (Hartman flow) and a vertical channel.
For both cases, the analytical solutions of QMHD equations con-
verge to MHD solution as τ goes to zero. QMHD numerical cal-
culations of an electrically conductive liquid melt in an external
magnetic field were done in, for example, [31].

In the present article, in the same way as the QGD system was
obtained as an extension of theNavier–Stokes equation system, the
QMHD system is obtained on the basis of averaging of the original
MHD system over a small time interval and taking into account gas
viscosity and thermal conductivity. Averaging over time is done
for all physical parameters, including the magnetic field. The first
results for 1D and 2D MHD calculations were published in [32]
and [33], respectively.

During the long history of development and application of
the QGD approach presented, the assumption of negligibility of
second-order time derivatives, which appear as a result of the
averaging procedure, in comparison with the first-order ones, was
always taken as a matter of course. In this article, this assumption
is checked numerically for the first time.

In Section 2 the development of the QMHD system of equations
is presented. The numerical algorithm and the finite-difference
scheme are described in Section 3. The solenoidal condition for a
magnetic field is presented in Section 4. Extensive testing of the
QMHD scheme is discussed in Sections 5 and 6, including correct
computation for complex cases of interactionwith discontinuity of
the tangential component of the magnetic field in 1D flows and a
propagation of MHD waves in a 2D formulation. The Orszag–Tang
vortex problem and the blast wave propagation test are discussed
in Section 7. In conclusion,wediscuss the possibilities of theQMHD
scheme for other flow simulations.

2. QMHD system of equations

The system of MHD equations for a viscous thermally conduc-
tive gas with zero electrical resistivity can bewritten in the follow-
ing form:

∂ρ

∂t
+

∂ρuα

∂xα

= 0, (1)

∂ρuβ

∂t
+

∂Tαβ

∂xα

= 0, (2)

∂E
∂t

+
∂Qα

∂xα

= 0, (3)

∂Bβ

∂t
+

∂Tm
αβ

∂xα

= 0, (4)
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where the indices denote coordinate axes α, β = x, y, z,

Tαβ = ρuαuβ + pδαβ − Παβ +
1
2
B2δαβ − BαBβ ,

Qα = ρuαH − Παβuβ − qα +
1
2
uαB2

− Bα


uβBβ


,

Tm
αβ = uβBα − uαBβ , (5)

E = ρε +
ρu2

2
+

B2

2
, H =

E + p
ρ

u2
= u2

x + u2
y + u2

z , B2
= B2

x + B2
y + B2

z .

Here ρ is the density, uα are the velocity components, Bα are the
components ofmagnetic field, E andH are the total energy per unit
volume and total specific enthalpy, respectively, p is the pressure,
and ε is the specific internal energy. The term

√
1/4π is included

in the definition of B. The system (1)–(3) is supplemented by an
equation of state, which in the case of an ideal gas, has the form

p = (γ − 1) ρ ε,

where γ is the adiabatic index.
The viscous stress tensor and the heat-flux vector are defined

as follows:

Παβ = µ


∂uα

∂xβ

+
∂uβ

∂xα

−
2
3
δαβ


∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z


,

qα = −k
∂T
∂xα

,

where µ is the dynamic viscosity coefficient,

k =
µγ R

(γ − 1)Pr

is the heat transfer coefficient, R is the universal gas constant, and
Pr stands for the Prandtl number.

Using the same approach as in [34], we average the system (1)–
(4) over a small time interval δt and calculate the time integrals
approximately as

1
δt

 t+δt

t
f (xα, t ′)dt ′ ≈ f (xα, t) + τ

∂ f (xα, t)
∂t

,

where f denotes the averaging quantities. We assume that δt is
smaller than the characteristic hydrodynamic time and that all
averaged values practically do not depend on the time interval δt
in some range of δt [15,16]. τ is small and related to an interval of
time averaging (0 ≤ τ ≤ δt), that is not strictly determined. So τ
may be considered as a free small parameter that will be defined
later.

Then the system (1)–(4) can be rewritten as

∂

∂t


ρ + τ

∂ρ

∂t


+

∂

∂xα


ρuα + τ

∂ρuα

∂t


= 0,

∂

∂t


ρuβ + τ

∂ρuβ

∂t


+

∂

∂xα


Tαβ + τ

∂Tαβ

∂t


= 0,

∂

∂t


E + τ

∂E
∂t


+

∂

∂xα


Qα + τ

∂Qα

∂t


= 0,

∂

∂t


Bβ + τ

∂Bβ

∂t


+

∂

∂xα


Tm
αβ + τ

∂Tm
αβ

∂t


= 0.

Analogously to development of the QGD system, we drop all
second-order time derivatives, supposing they are small compared
with the first-order time derivatives: ∂

∂t
τ

∂ f
∂t

 ≪

∂ f∂t
 , (6)
where f is a considered variable. For example, the continuity
equation under assumption (6) is

∂ρ

∂t
+

∂

∂xα


ρuα + τ

∂

∂t
ρuα


= 0.

We define the time derivative of momentum from the equation
of motion:
∂ρuα

∂t
= −

∂

∂xβ


ρuαuβ + pδαβ +

1
2
B2δαβ − BαBβ


,

where we restrict our consideration to first-order terms only—that
is, we omit terms of the order of O(τµ) and switch indices α ↔ β .
Introducing the definitions

wα =
τ

ρ

∂

∂xβ


ρuαuβ + pδαβ +

1
2
B2δαβ − BαBβ


,

Jα = ρ (uα − wα) , (7)

we present the continuity equation in smoothed form as follows:

∂ρ

∂t
+

∂ Jα
∂xα

= 0. (8)

In the same way, omitting the terms of order O(τk), we write
the other equations of the QMHD system as

∂ρuβ

∂t
+

∂T n
αβ

∂xα

=
∂Πn

αβ

∂xα

, (9)

∂E
∂t

+
∂Fα

∂xα

+
∂Q n

α

∂xα

=
∂Πn

αβuβ

∂xα

, (10)

∂Bβ

∂t
+

∂Tm
αβ

∂xα

= −
∂Tmn

αβ

∂xα

, (11)

where

Fα = Jα


H +

B2

2ρ


− Bα


uβBβ


,

T n
αβ = Jαuβ + pδαβ +

1
2
B2δαβ − BαBβ ,

Πn
αβ = Παβ − ρuα∆uβ − ∆pδαβ −

1
2

(∆B)2 δαβ + ∆

BαBβ


,

Q n
α = −qα + ρuα∆ε + ρuα


p + B2∆ 1

ρ

+ uα


Bβ∆Bβ


− Bα


Bβ∆uβ


,

Tmn
αβ = ∆uβBα − ∆uαBβ + uβ∆Bα − uα∆Bβ , (12)

with τ -terms presented with use of the definition τ∂ f /∂t = ∆f .
Here ∆-terms are defined from the known MHD equations:

∆
1
ρ

= −τ


uα

∂

∂xα

1
ρ

−
1
ρ

∂uα

∂xα


, (13)

∆uα = −τ


uβ

∂uα

∂xβ

+
1
ρ

∂p
∂xα

+
1
ρ

∂

∂xβ

B2

2
δαβ −

1
ρ

∂BαBβ

∂xβ


, (14)

∆ε = −τ


uα

∂ε

∂xα

+
p
ρ

∂uα

∂xα


, (15)

∆p = −τ


uα

∂p
∂xα

+ γ p
∂uα

∂xα


, (16)

∆Bα = τ
∂

∂xβ


uαBβ − uβBα


. (17)

∆

BαBβ


= Bα∆Bβ + Bβ∆Bα. (18)
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The system (8)–(11) is the approximation of the initial system
(1)–(4) with the order of τ , and for τ = 0 equation system (8)–(11)
reduces to the classical system (1)–(4). Notice that the averaging
procedure and the introduction of the τ -terms do not disturb the
solenoidal condition for themagnetic field divB = 0. This property
of QMHD equations was proved analytically in [35].

The original MHD equation system includes viscous and heat-
conductive terms, but does not include the terms responsible for
magnetic diffusivity. Magnetic diffusivity νm = c2/(4πσ) (where
σ is the electric conductivity) can be included in (added to) the
right-hand side of (4) in the form

νm∇ (B × [∇ × B]) = νm
∂

∂xα


Bβ


∂Bβ

∂xα

−
∂Bα

∂xβ


, (19)

which represents Joule heating, and the right-hand side of (3) in
the form

νm
∂2Bα

∂xβ∂xβ

. (20)

So these terms appear on the right-hand side of (10) and (11) of the
QMHD system in the form of (20) and (19) correspondingly. Below
the effect of magnetic diffusivity is not taken into consideration.

Generalization of the QMHD system for a nonideal gas was per-
formed in [35], including the influence of external forces and the
heat source. This variant of the QMHD equations has the following
form:

∂

∂t
ρ + div[ρ(u − w)] = 0, (21)

∂

∂t
(ρu) + div[ρ(u − w) ⊗ u − B ⊗ B] + ∇


p +

1
2 |B|

2
= divΠn

+ [ρ − τdiv(ρu)]F, (22)
∂

∂t


E +

1
2 |B|

2
+ div [(E + p)(u − w)

+ |B|
2(u − w) − ((u − w) · B)B


= div


−q + τ(β · B)u + Πnu


+ ρ(u − w) · F + Qh, (23)

∂

∂t
B + div[(u − w) ⊗ B − B ⊗ (u − w)]

= div[τ(u ⊗ β − β ⊗ u)], (24)
divB = 0. (25)

Here the operators div and ∇ are taken with respect to the
spatial variables (x1, x2, x3). The divergence of a tensor is taken
with respect to its first index. The signs ⊗ and · denote the tensor
and inner products of vectors. The given functions F = F(x, t) and
Qh = Qh(x, t) ≥ 0 represent the density of the body forces and the
power of the heat sources. The auxiliary velocity vector functions
w andw are given by

w =
τ

ρ
[div(ρu ⊗ u − B ⊗ B) + ∇


p +

1
2 |B|

2
− ρF],

w =
τ

ρ
[ρ(u∇)u − div(B ⊗ B) + ∇


p +

1
2 |B|

2
− ρF].

The nonsymmetric regularized viscous stress tensor is written
in the form

Πn
= Π + ρu ⊗ w − τ(β ⊗ B + B ⊗ β)

+ τ


u∇p + ρC2

s divu + β · B −
pT
ρεT

Q


I,

where I is the identity tensor, and Cs is the sound speed defined by

C2
s = pρ +

Tp2T
ρ2εT

.

Fig. 1. Two adjacent cells with the set variables.

The regularized heat flux q is given by

−q = k∇T + τ


ρ


u∇ε −

p
ρ2

u∇ρ


− Q


u,

and the auxiliary vector function β has the form

β = div(u ⊗ B − B ⊗ u).

QMHD system (21)–(25) is more compact and convenient
for analytical analysis. It was used to study entropy properties
of regularized equations and to derive the entropy balance
equation [35]. This form might also allow a more straightforward
finite-difference approximation because of its compactness and
appropriate introduction of theβ function. In the following, we use
the index form (8)–(11).

3. Numerical algorithm

To construct the numerical algorithm, an explicit finite-
difference schemewith central approximation of the space deriva-
tives is used. A uniform grid is applied dividing the computational
domain into cells of size ∆x × ∆y × ∆z. Here ∆ denotes the cor-
responding spatial step. Independent variables are assigned to the
centers of the cells and are denoted by integer indices i, j, k, cor-
responding to the directions along the axes x, y, z. Half-integer in-
dices denote the values on the interfaces between the cells. Fig. 1
shows two adjacent cellswith the variables defined at their centers
and on the interface between them.

In discretization of (8)–(11), approximation of first-order and
second-order space derivatives is performed with half-integer
nodes of the grid. As follows from Fig. 1, the derivatives are re-
placed by expressions as

∂ f
∂x


i,j,k

→
fi+1/2,j,k − fi−1/2,j,k

∆x
, (26)

∂

∂x


ξ
∂ f
∂x


i,j,k

→
1

∆x


ξi+1/2,j,k

∂ f
∂x


i+1/2,j,k

− ξi−1/2,j,k
∂ f
∂x


i−1/2,j,k


, (27)

where
∂ f
∂x


i+1/2,j,k

→
fi+1,j,k − fi,j,k

∆x
,

where f denotes known values at time t , and ξ is an appropriate
factor. For mixed derivatives we suggest the following approxima-
tion, which is successfully proved by simulations:
∂

∂x


ξ

∂ f
∂y


i,j,k

→
1

∆x


ξi+1/2,j,k

∂ f
∂y


i+1/2,j,k

− ξi−1/2,j,k
∂ f
∂y


i−1/2,j,k


, (28)
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where
∂ f
∂y


i+1/2,j,k

→
fi+1/2,j+1/2,k − fi+1/2,j−1/2,k

∆y
,

fi+1/2,j+1/2,k =
1
2


fi+1/2,j,k + fi+1/2,j+1,k


,

fi+1/2,j,k =
1
2


fi,j,k + fi+1,j,k


.

For time derivatives the expression is

∂ f
∂t

→
f̂i,j,k − fi,j,k

∆t
, (29)

where ∆t is a time step, and f̂ denotes unknown values at a new
time point t + ∆t . Rules (26)–(29) mean that the unknown values
at a new time point are computed via the known values at the pre-
vious time point and the differences between the fluxes through
the edges of the cell (i, j, k).

All the required values fi+1/2,j,k and ξi+1/2,j,k in (26)–(28) are
computed from ‘‘primitive’’ variables


ρ, ux, uy, uz, Bx, By, Bz, p


,

which in turn are averaged between adjacent cells—for example,
for the density we have

ρi+1/2,j,k = 0.5

ρi,j,k + ρi+1,j,k


,

and for total energy the equation of state is

Ei+1/2,j,k =
pi+1/2,j,k

γ − 1

+
1
2


ρi+1/2,j,k


u2
x i+1/2,j,k + u2

y i+1/2,j,k + u2
z i+1/2,j,k


+ B2

x i+1/2,j,k + B2
y i+1/2,j,k + B2

z i+1/2,j,k


.

Wearrive at an explicit time-difference scheme of the following
form: for the density,

ρ̂i,j,k = ρi,j,k −
∆t
∆x


Ji+1/2,j,k − Ji−1/2,j,k


−

∆t
∆y


Ji,j+1/2,k − Ji,j−1/2,k


−

∆t
∆z


Ji,j,k+1/2 − Ji,j,k−1/2


,

for the momentum components,

ρuβ i,j,k = ρuβ i,j,k −
∆t
∆x


T n
xβ i+1/2,j,k − T n

xβ i−1/2,j,k


−

∆t
∆y


T n
yβ i,j+1/2,k − T n

yβ i,j−1/2,k


−

∆t
∆z


T n
z β i,j,k+1/2 − T n

z β i,j,k−1/2


+

∆t
∆x


Πn

xβ i+1/2,j,k − Πn
xβ i−1/2,j,k


+

∆t
∆y


Πn

yβ i,j+1/2,k − Πn
yβ i,j−1/2,k


+

∆t
∆z


Πn

z β i,j,k+1/2 − Πn
z β i,j,k−1/2


,

and for the total energy,

Êi,j,k = Ei,j,k −
∆t
∆x


Wx i+1/2,j,k − Wx i−1/2,j,k


−

∆t
∆y


Wy i,j+1/2,k − Wy i,j−1/2,k


−

∆t
∆z


Wz i,j,k+1/2 − Wz i,j,k−1/2


,

where

Wx i±1/2,j,k = Fx i±1/2,j,k + Qx i±1/2,j,kΠ
n
xβuβ i±1/2,j,k, etc.
The discretized form of (6) for amagnetic fieldwill be described
in the next section. The stencil for 3D flow computations consists
of 27 space points.

Time step ∆t is determined by the Courant condition:

∆t = C · min

 ∆x
max
i,j,k


|ux i,j,k| + cfx i,j,k

 ,
∆y

max
i,j,k


|uy i,j,k| + cfy i,j,k

 ,
∆z

max
i,j,k


|uz i,j,k| + cfz i,j,k


 ,

where C is the numerical Courant coefficient, and in computations
it falls in the range 0.1–0.3 in most cases, and cf is the fast magne-
tosonic velocity [36].

To determine the dissipative coefficients τ , µ, and k, we follow
the QGD method where for viscous heat-conducting nonmagne-
tized flows τ is determined according to the kinetic theory as the
Maxwell relaxation time τ = λ/c (λ is the mean free path, c is the
sound velocity), and µ and k are related to τ as [37]

µ = τ · p · Sc, k = τ p
Sc
Pr

γ R
γ − 1

, (30)

where Sc is the Schmidt number. For QGD calculations of gas flows
in the Euler approximation, where physical viscosity and heat con-
ductivity coefficients are neglected, in the definition of τ we re-
place λ with the numerical space step h and determine τ = αh/c ,
where α is a tuning numerical coefficient, 0 < α < 1. In this way
all dissipative coefficients are regarded as artificial regularization
factors.

The same kinetic theory approach could be used for the QMHD
system forMHD single-fluid quasi-neutral gas flows. In spite of the
fact that plasmas have at least two particle species, in a single-fluid
approximation the mean free paths of all interacting species
are assumed to be similar, which determines a single Maxwell
relaxation time. Otherwise the physics is essentially multifluid.

We solve system (8)–(11) in the Euler approximation and all
dissipative terms, containing τ , µ, and k coefficients, are regarded
as artificial regularization factors. Instead of sound velocity c , we
determine τ using the fast magnetosonic velocity cf.

τ = α
h
cf

. (31)

Since there are three fast magnetosonic velocities cfx, cfy, and cfz ,
we should compute three different parameters τx, τy, and τz use
them in (13)–(18) depending on the interface of the cell which we
consider. In the same way, h = ∆x, ∆y or ∆z:

τx = α
∆x
cfx

, τy = α
∆y
cfy

, τz = α
∆z
cfz

.

The use of cfx, cfy, and cfz is necessary inmagnetohydrodynamics, as
the fastest perturbations in the presence of magnetic fields prop-
agate with fast magnetosonic velocity, which has different values
in different directions with respect to the local vector of the mag-
netic field. In practice, we put cfx, cfy, and cfz as factors before the
corresponding x, y, or z derivative.

For QGD and QMHD methods, α appears as the main tuning
parameter (e.g., [15,23]). Theoretical investigations and practical
experience show that for α ∼ 1, the numerical dissipation is
increased and shock-wave fronts are smoothed. For α . 0.1,
numerical oscillations appear thatmay even destroy the numerical
solution. So for practical applications, α can be taken in the range
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Fig. 2. The components of the electric field used in the equations for the magnetic
field of the QMHD system.

between 0.1 and 0.5, depending on the problem considered and
according to the accuracy and stability of the numerical algorithm.
With base values α = 0.5 and Sc = Pr = 1, the QGD
and QMHD algorithms allow one to obtain a stable numerical
solution for a large variety of gas dynamic flows, but the numerical
viscosity introduced by the scheme is much higher normally than
the physical viscosity present in a real system. This must be taken
into account, but this is a common issue for all numerical methods.

In special cases the additional tuning of numerical coefficients
Sc and Pr improves a numerical solution compared with the base
results [18]. The influence of Sc on the numerical solution of MHD
problems is demonstrated below in test case 6.2. For the other
problems considered, Pr and Sc are chosen to be 1.

In the above numerical scheme all space derivatives are ap-
proximated by central differences, which provide accuracy of or-
der O(h2). The definition of τ (31) decreases the accuracy down to
O(h), but allows the use of (30) with α = 0.5, Sc = 1, and Pr = 1
for all kinds of problems.

We can construct the QGD numerical scheme for nonuniform
space grids by replacing ∆x, ∆y, and ∆z with ∆xi,j,k, ∆yi,j,k, and
∆zi,j,k. Here uniform space grids are presented for simplicity.

The presented numerical algorithm is simple because it is ex-
plicit, only central-difference approximations of the derivatives are
used and additional monotonization procedures as limiting func-
tions are not required.

4. Solenoidal condition

In numerical solution of the QMHD system of equations it is
necessary to satisfy the solenoidal condition for themagnetic field.
A good approach for this is to use Faraday’s law of induction:

∂B
∂t

= −curl E, (32)

where E is the electric field. On the right-hand side of (32) themag-
netic diffusivity term (20) can be added. In our case we suppose
νm = 0.

This ideawas used in a previously developed constrained trans-
port method [36,38], whereby the components of the magnetic
field, obtained from (4) (or (11) in the QMHD case), are replaced
by the values from (32).

The electric field in the matter, moving with velocity u, is

E = − [u, B] , (33)

and can be computed with the known values on the faces of cells
(see Fig. 2), which should be shifted to the edges (see Fig. 3).

In the QMHD case, the constrained transport method is modi-
fied so that expression (33) transforms to another one, which con-
tains τ -terms:

E = − [u, B] − [u, ∆B] − [∆u, B] . (34)
Fig. 3. Transport of the components of the electric field from the face centers to
the edge centers.

The components of E from (34) can be rewritten according to
(5) with QMHD corrections (12) as

Ex i,j+1/2,k = Tm
yz + Tmn

yz ,

Ex i,j,k+1/2 = −Tm
zy − Tmn

zy ,

Ey i,j,k+1/2 = Tm
zx + Tmn

zx ,

Ey i+1/2,j,k = −Tm
xz − Tmn

xz ,

Ez i+1/2,j,k = Tm
xy + Tmn

xy ,

Ez i,j+1/2,k = −Tm
yx − Tmn

yx .

(35)

A brief description of the constrained transport method is
presented in the Appendix.

It is interesting to compare the QMHD algorithm presented
with other knownmethods. This comparison is done below with a
high-order PPML [5,6]. The comparison of the QMHDmethod with
a robust Lax–Friedrichsmethod of the first orderwas done recently
for a simplified case—a barotropic QGD system for 1D shallow wa-
ter flows in the absence ofmagnetic fields [39]. This simplified case
apparently allows one to study the advantages and disadvantages
of both models. A Riemann problem for strong discontinuity with
a height ratio of 50:1, a problem of shock formation in reflecting
flow, and a problemof decay of a columnof liquidwere considered.
The first two of these problems have exact solutions, which were
used to determine accuracy and convergence of the algorithms. For
all three tasks, it was shown that with a successful choice of α (in
the first two cases α = 0.2, in the last case α = 0.5) the QGD algo-
rithm significantly outperforms the accuracy of the Lax–Friedrichs
scheme. At the same time, the QGD algorithm is roughly twice
as effective in computation time than the implementation of the
Lax–Friedrichs scheme used.

5. Discontinuous solutions

The numerical scheme described was verified on several dis-
tinctive MHD problems to check its convergence and accuracy for
Euler equations. For all tests, a uniform grid with a constant step in
each direction was set and the equation of state of an ideal gas was
used. In the 1D case, all computationswere performed on the inter-
val x ∈ [0, 1]. Initial values of vector V components, representing
physical parameters, were defined on the left and right sides from
the middle point of the interval as follows:

V =


VL, if x ≤ 0.5,
VR, if x > 0.5.

The number of numerical cells was equal to N , and the final time
for computations was denoted as T . Boundary conditions were
matched with corresponding initial conditions at the limits of the
computational region. For every value of N , we calculate the rela-
tive error δN and the real order of accuracy RN , using the following
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Fig. 4. Test 5.1. The result distributions of density, pressure, and y-components of
the velocity and the magnetic field obtained on a grid with N = 512 in comparison
with the exact solution (solid lines).

definitions:

δN =
1
S

S
k=1

EN (Vk) ,

EN (Vk) =

N
i=1

|Vk,i − V ex
i,k |

N
i=1

|V ex
k,i|

,

RN = log2

δN/2/δN


, (36)

where V ex is an ‘‘exact’’ solution which is actually obtained on a
very fine grid (N = 20480) by the same code, and S is the number
of nonzero components of V. In (36) the argument of logarithm is
always positive. Negative values of RN mean that the solution does
not converge.

5.1. Riemann problem with initial discontinuity of the transverse
component of the magnetic field

The initial conditions are given by [4]
ρL, u L

x , u
L
y , u

L
z , B

L
y , B

L
z , p

L
= (1.0, 0, 0, 0, 1.0, 0, 1.0),

ρR, u R
x , u R

y , u R
z , B R

y , B R
z , pR


= (0.125, 0, 0, 0, −1.0, 0, 0.1).

The component of the magnetic field Bx = 0.75, the adiabatic
index γ = 2, N = 512, and T = 0.1. The computational
parameters are the Courant number C = 0.2 and regularization
coefficient α = 0.4. Computation results are presented in
Fig. 4. In this problem, the solution of the QMHD system of
equations consists of a fast rarefaction wave, moving to the left,
an intermediate shock wave and a slow rarefaction wave, contact
discontinuity, a slow shock wave, and one more fast rarefaction
wave, moving to the right. Detailed discussion of this solution
can be found in [3]. In the figures, the numerical solution is
depicted by dots and the exact solution is shown as a solid line.
The numerical scheme of the QMHD system accurately represents
all physical discontinuities and the distribution behavior of all
quantities without visible oscillations.

Notice that similar peaks in the density and pressure distribu-
tions, aswe see in Fig. 4, are presented inmany other computations
of this problem performed by high-order methods with limiters—
see, for example, [5,40]. As can be seen from Table 1, with grid re-
finement the scheme error decreases at a rate typical of first-order
schemes. We could decrease the relative errors by varying Sc and
Pr .

The same test was performed in [5] with the PPML, which is
formally third order accurate in space. The PPML results obtained
on a grid with 512 cells are very similar to the results presented on
Fig. 4, except for the region of contact discontinuity (see Fig. 3 in
[5]). Numerical comparison does not show a significant superiority
of the PPML: the average relative errors are 2–3 times smaller for
the PPML, but the rate of convergence is similar (see Table 1).
For this problem the PPML behaves like a first-order scheme. It
resolves discontinuities better, but requires more computational
cost than the QMHD method. Still, the QMHD method requires a
more detailed computational grid to obtain a comparative quality
of a solution.

For this test case the direct numerical estimation of condition
(6) was performed. Time derivatives for every moment n and
coordinate i were approximated as

∂ f
∂t

n
i

=
f n+1
i − f n−1

i

∆t1 + ∆t2
,

∂

∂t
τ

∂ f
∂t

n
i

=
1

0.5(∆t1 + ∆t2)


τ
n+1/2
i

∂ f
∂t

n+1/2

i
− τ

n−1/2
i

∂ f
∂t

n−1/2

i


,

where

∂ f
∂t

n−1/2

i
=

f ni − f n−1
i

∆t1
,

∂ f
∂t

n+1/2

i
=

f n+1
i − f ni

∆t2
,

τ
n±1/2
i =

1
2


τ n
i + τ n±1

i


,

where ∆t1 and ∆t2 stand for time intervals between moments
n − 1 → n and n → n + 1, respectively.

As a result we obtained that the first-order time derivatives of
all the variables considered dominate the second-order ones by a
factor 50–1000 or more except for the neighborhood of the steep-
est contact discontinuity (Fig. 4, for x ∼ 0.65), where the factor is
about 5–20. Thus, the assumption used in the QMHD method that
the second-order time derivatives are negligibly small is valid even
at discontinuities.

5.2. Riemann problem with formation of all forms of discontinuities

Here the solution consists of two fast shock waves with speed
equal to Mach numbers of 1.84 and 1.28 and directed to the left
and to the right, respectively, two slow shock waves moving to
the left and to the right with Mach numbers of 1.38 and 1.49,
respectively, and one rotational and two contact discontinuities.
The initial conditions are given by [4]
ρL, u L

x , u
L
y , u

L
z , B

L
y , B

L
z , p

L
=


0.18405, 3.8964, 0.5361,

2.4866, 2.394/
√
4π, 1.197/

√
4π, 0.3641


,

ρR, u R
x , u R

y , u R
z , B R

y , B R
z , pR


=


0.1, −5.5, 0, 0, 2/

√
4π, 1/

√
4π, 0.1


.

The component of the magnetic field Bx = 4/
√
4π , the

adiabatic index γ = 5/3, N = 512, T = 0.15, the Courant number
C = 0.2, and the regularization coefficient α = 0.5. Computation
results are presented in Fig. 5.
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Table 1
Test 5.1. The average relative errors and the rates of convergence at T = 0.1 for the QMHD method and the PPML.

N Sc = 1, Pr = 1 Sc = 0.5, Pr = 1 Sc = 1, Pr = 0.5 PPML
δN , 10−2 RN δN , 10−2 RN δN , 10−2 RN δN , 10−2 RN

128 7.416 – 6.496 – 7.495 – 3.346 –
256 4.844 0.614 4.167 0.641 4.904 0.612 1.929 0.795
512 2.851 0.765 2.344 0.830 2.906 0.755 0.8839 1.126

1024 1.761 0.695 1.436 0.710 1.798 0.963 0.4863 0.862
Table 2
Test 5.2. The average relative errors and the rates of convergence at T = 0.15 for the QMHD method and the PPML.

N Sc = 1, Pr = 1 Sc = 0.5, Pr = 1 Sc = 1, Pr = 0.5 PPML
δN , 10−2 RN δN , 10−2 RN δN , 10−2 RN δN , 10−2 RN

128 6.951 – 5.625 – 7.079 – 6.244 –
256 4.353 0.675 3.415 0.720 4.469 0.664 4.047 0.626
512 2.612 0.737 2.013 0.763 2.689 0.733 2.540 0.672

1024 1.585 0.721 1.213 0.731 1.632 0.720 1.637 0.634
Fig. 5. Test 5.2. The distributions of density, pressure, and y-components of the
velocity and the magnetic field obtained on a grid with N = 512 in comparison
with the exact solution (solid lines).

Fig. 6. Test 5.2. Grid convergence for the example of the density and x-component
of the velocity. The computations were performed on grids with N = 128 to
N = 1024 cells.

Convergence of the numerical solution to exact one by consec-
utive reduction of the grid step by 2 times for the density and the
velocity profiles is shown in Fig. 6. An accurate distribution of the
density is achieved on fine grids, whereas the velocity and pres-
sure profiles are well resolved even on rougher grids. Table 2 gives
the average relative errors and the rate of convergence for this test
obtained in calculations with varying Sc and Pr . The results for the
PPML are presented for comparison. Here the PPML shows similar
values of average relative errors and an even worse result for the
rate of convergence.

6. Smooth solutions

6.1. Propagation of MHD waves in the 2D case

The following tests aim to investigate smooth solutions (fast,
slow, and Alfvén waves). In these tests, the actual order of the
difference schememust be in correspondencewith the order of the
approximation. Here, unlike the previous tests for discontinuous
solutions, by definition a high-order scheme must demonstrate
higher accuracy than the first-order scheme.

The following problem is a perfect quantitative test to deter-
mine accuracy and convergence order of a numerical algorithm.

All physical parameters in the entire computational domain are
equal to constant values and are chosen so that main waves are
sufficiently distinct and the wave vector is directed at some angle
to the magnetic field. The waves are specified as perturbations to
initial constant values of physical quantities in the following form:
δU = AR sin (2πx) .

Here,U = [ρ,ux,uy,uz, E, By, Bz] is the vector of conservative
variables, A is a magnitude, R is the given right eigenvector
in conserved variables for a wave mode under consideration in
hyperbolic MHD system matrix. In all cases, A = 10−6. The size
of the computational domain is equal to one wavelength. Periodic
boundary conditions are used for all variables. The error of the
numerical solution is measured by norm estimation after the wave
passes a distance equal to one wavelength. In this case the initial
state is evolved for a time T = λ/c , where λ is the wavelength,
and c is the speed of the wave mode under consideration. For
each component of the conserved variable, we calculate the error
with respect to the initial conditions. The expressions for error
estimation are

∥δU∥ =

 S
k=1

(δUk)
2, δUk =

1
N2

N
j=1

N
i=1

|Un
k,i,j − U0

k,i,j|.

Here Un
k,i,j is a numerical solution for the kth component of the

vector of conservative variables for each point (i, j) at the time
moment n, U0

k,i,j is an initial value, S is the number of vector
components, andN represents the number of points in the domain,
which is set equal in each direction. The initial conditions are given
by [36,41]

ρ = 1, p =
1
γ

, bx = 1, by =
√
2, bz = 0.5,

where b = B/
√
4π and γ = 5/3.
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Table 3
Test 6.1. The average relative errors and the rates of convergence after thewavepasses a distance equal to onewavelength.

N Fast magnetosonic wave Alfvén wave Slow magnetosonic wave
∥δU∥, 10−8 RN ∥δU∥, 10−8 RN ∥δU∥, 10−8 RN

64 15.395 – 5.6148 – 12.508 –
128 8.1368 0.9199 2.9196 0.9435 6.6601 0.9092
256 4.1871 0.9585 1.4920 0.9685 3.4399 0.9532
512 2.1243 0.9790 0.75461 0.9834 1.7485 0.9762

1024 1.0700 0.9894 0.37953 0.9915 0.88157 0.9880
2048 0.53696 0.9947 0.19033 0.9957 0.44262 0.9940
The values of the components of the right eigenvectors are
equal to

R = (0.4472135954999580, −0.8944271909999160,
0.4216370213557840, 0.1490711984999860,
2.012457825664615, 0.8432740427115680,
0.2981423969999720)

for a fast magnetosonic wave moving to the left,

R = (0, 0, −0.3333333333333333, 0.9428090415820634,
0, −0.3333333333333333, 0.9428090415820634),

for an Alfvén wave moving to the left, and

R = (0.8944271909999159, −0.4472135954999579,
−0.8432740427115680, −0.2981423969999720,
0.6708136850795449, −0.4216370213557841,
−0.1490711984999860)

for a slow magnetosonic wave moving to the left, where the com-
ponents of the right eigenvectors correspond to the ordering of the
conservative parameters’ vector U.

The fast, Alfvén, and slow wave speeds are equal to 2, 1, and
0.5, respectively. The absolute error in propagation of each of
these waves and the order of numerical algorithm accuracy are
presented in Table 3. Our algorithm has an actual order of accuracy
close to 1 on smooth solutions for all problems considered.

6.2. Numerical dissipation and decay of Alfvén waves

In numericalmodelingwith a space grid, any numerical scheme
always has some dissipation. To estimate the level of numerical
dissipation of the QMHD scheme, a test on decay of Alfvén waves
was performed [42]. At the initialmoment of time, the Alfvénwave
has the following parameters

δux = uampca sin

kxx + kyy


,

and moves on a fixed background with ρ0 = 1, p0 = 1, Bx = 1,
and By = Bz = 0.

The computational domain represents a square of side L = 1.
The initial Alfvén wave speed is ca = 0.7071 and its magnitude is
uamp = 0.1, the adiabatic index is γ = 5/3, and periodic boundary
conditionswere applied. The basic computationwas donewith the
Courant number C = 0.3, α = 0.1, and a grid of N = 128 in
each direction. Fig. 7 shows the time evolution of the maximum of
the magnetic field z-component in computations on a sequence of
twice-refined grids (N = 64, 128, 256) until time T = 10. For the
grid with N = 128 and Sc = 1, α changed from 0.5 to 0.1; for the
grid with N = 128 and α = 0.1, Sc changed from 1 to 0.4. The best
case, α = 0.1 and Sc = 0.4, was once again recomputed on a twice
more refined grid with N = 256.

The dissipation level corresponds to the schemes of first order
in space and time, and quickly decreases with grid refinement. For
the given Courant number and number of grid cells, dissipation
of the numerical scheme decreases as the α and Sc decrease.
The smallest dissipation level of the numerical scheme, wherein
solution stability is preserved, corresponds to α = 0.1 and Sc =

0.4 on a grid with N = 128. In this case, the computational results
are similar to the results obtained by the PPML for N = 64 (see Fig.
11 in [6]). For the same quality, we need only a 2 times finer grid,
not a 3–4 times finer grid.

6.3. Propagation of a circularly polarized Alfvén wave

This test problem was considered in [43] to study the accuracy
and the order of convergence of numerical schemes on smooth
solutions. The Alfvén wave propagates along the diagonal of the
grid at an angle θ = tan−1(0.5) ≈ 26.6o to the x-axis. The
computational domain has a size of 0 < x < 1/ cos θ , 0 < y <
1/ sin θ , with N × N cells. Since the wave does not move along
diagonals of discrete cells, the problemhas a realmultidimensional
nature. The initial conditions are given by

ρ = 1, u∥ = 0, u⊥ = 0.1 sin(2πξ),

uz = 0.1 cos(2πξ),

p = 0.1, B∥ = 1, B⊥ = 0.1 sin(2πξ),

Bz = 0.1 cos(2πξ),

where ξ = x cos θ + y sin θ . Here, u∥, u⊥ and B∥, B⊥ are
components of the velocity and themagnetic field directed parallel
and perpendicular to the direction of the Alfvén wave movement.
For example,

B∥ = Bx cos θ + By sin θ, B⊥ = By cos θ − Bx sin θ.

The wave propagates toward a point (x, y) = (0, 0) with speed
B∥/

√
ρ = 1. Also, computationswere performed for the case of the

stationary Alfvén wave with u∥ = 1 in the initial conditions. The
problem was solved with N = 16, 32, 64, 128, and 256 in both
directions, and the relative numerical error was estimated for each
quantity by the formula

δN(U) =

N
i=1

N
j=1

|UN
i,j − Uex

i,j |

N
i=1

N
j=1

|Uex
i,j |

, U = u⊥, uz, B⊥, Bz,

where Uex
i,j is the exact solution. The convergence order of the

scheme was estimated according to (36), where δN was defined as
the mean by

δN =
1
4

(δN(u⊥) + δN(uz) + δN(B⊥) + δN(Bz)) .

The computationswere done until time T = 5with the Courant
number C = 0.3, α = 0.1, the adiabatic index γ = 5/3, and
periodic boundary conditions.

In Fig. 8 the orthogonal component B⊥ of the magnetic field is
presented in computations on various grids for propagating and
stationary Alfvénwaves. The values ofN are indicated by numbers.
It can be seen that the numerical solution of the problem tends to
the exact solutionwith increasingN . In Table 4, the average relative
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Table 4
Test 6.3. The average relative errors and the rates of convergence.

N Propagating Stationary u∥ = 1
(u∥ = 0) (u∥ = 1) Flux-CT/CD [43]
δN RN δN RN δN RN

8 1.697 – 0.1234 – 0.315 –
16 0.9070 0.9038 7.539 × 10−2 0.7109 0.122 1.368
32 0.3435 1.401 3.914 × 10−2 0.9457 3.7 × 10−2 1.721
64 0.1489 1.206 1.975 × 10−2 0.9868 1.3 × 10−2 1.509

128 7.203 × 10−2 1.048 9.916 × 10−3 0.9940 – –
256 3.605 × 10−2 0.9986 4.968 × 10−3 0.9971 – –
Fig. 7. Test 6.2: Time evolution of themaximumof themagnetic field z-component
in computations on various grids, for different α and Schmidt numbers.

Fig. 8. Test 6.3: Orthogonal component of the magnetic field in the computations
on various grids for a propagating Alfvén wave (left) and for a stationary Alfvén
wave (right). The values of N are indicated by numbers.

error and the order of convergence are shown. These are compared
with the second-order in space constrained transport/central
difference (CT/CD) scheme from [43] which apparently showed
higher accuracy (the actual order of CT/CD is 1.4–1.7). The results
obtained confirm that with increasing of the resolution, the QMHD
scheme tends to first order of accuracy in space and time. Still, by
comparing the QMHD average relative errors with the errors of the
CT/CD scheme, we note that the QMHD scheme gives similar errors
for grids of N = 32 and 64, and even better results for N = 8 and
16 (Table 4).

7. Complex flows

7.1. Orszag–Tang vortex

In this problem, the formation of the complex structure of shock
waves in supersonic turbulence is considered [44,45]. This is a
hard problem for many numerical schemes since the appearing
gradients of the quantities, which are especially strong in the
central part of the computational domain, could lead to oscillations
and negative density values.
Fig. 9. Test 7.1. Distributions of pressure on a 512 × 512 grid at T = 0.5.

The problem is solved in the square domain with side L = 1.
The initial conditions are given by

ρ = 25/(36π), p = 5/(12π),

ux = −sin(2πy), uy = sin(2πx), uz = 0,
Bx = −B0 sin(2πy), By = B0 sin(4πx), Bz = 0,

where B0 = 1/
√
4π . A solution is computed up to time T = 0.5

on a 512 × 512 grid with Courant number C = 0.4, α = 0.2,
and adiabatic index γ = 5/3. Periodic boundary conditions are
applied.

The resulting distributions of pressure and magnetic energy
are shown in Figs. 9 and 10. The structure of the flow obtained
preserves all the shocks with high accuracy. The levels of con-
stant values show that the symmetry of the flow is perfectly con-
served, which is very important for investigation of turbulence.
Some inviscid invariants such as helicity (in three dimensions) and
enstrophy (in two dimensions) are fundamentally related to the
symmetry of the turbulent flow. Helicity expresses the correlation
between the velocity and its curl, and is conserved as well as a
numerical scheme conserves mirror symmetry [46]. Also the bet-
ter symmetry properties of differential operators are reproduced
by the difference approximation, the greater the accuracy of the
smallest scales of motion that could be achieved, since the behav-
ior of turbulent flow on small scales is a result of a delicate balance
between convective transport and diffusive dissipation [47].

Figs. 11 and 12 show distributions of pressure along the lines
y = 0.3125 and y = 0.4277 obtained on a sequence of twice-
refined grids. The solution on the grid with N = 1024 is depicted
by the black line. Starting fromN = 128, the QMHD scheme gives a
solution of sufficient quality, representing all the existent shocks. It
is also confirmed by Table 5, where the average relative errors and
the rates of convergence are shown in relation to the solution with
N = 1024, regarded as an ‘‘exact’’ solution. These were computed
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Fig. 10. Test 7.1. Distributions of magnetic energy on a 512 × 512 grid at T = 0.5.

Fig. 11. Test 7.1. Pressure along the line y = 0.3125 on various grids at T = 0.5.

Fig. 12. Test 7.1. Pressure along the line y = 0.4277 on various grids at T = 0.5.

Table 5
Test 7.1. The average relative errors
and the rates of convergence at T =

0.5.

N δN RN

32 0.2433 –
64 0.1634 0.574

128 9.779 × 10−2 0.741
256 5.289 × 10−2 0.887
512 2.145 × 10−2 1.30

for all nonzero quantities in the whole 2D domain. In this difficult
test case the actual order of the scheme increases with the number
of dots and reaches a value of 1.30 (Table 5).

Compared with the results obtained with the high-order
PPML [6], we can say that for this problem the rate of convergence
of the QMHD scheme is similar to that of the PPML. Still, the PPML
gives smaller average relative errors: δN = 4.5204 × 10−2 for
N = 100 and δN = 1.9262× 10−2 for N = 200 (see Table 2 in [6]).

For the first time we suggest extending the Orszag–Tang vortex
problem to the 3D case with all nonzero initial components of
Fig. 13. Test 7.1. Three-dimensional Orszag–Tang vortex problem. Distribution of
magnetic field energy in a 3D plot for T = 0.5.

Fig. 14. Test 7.1. Three-dimensional Orszag–Tang vortex problem. Distribution of
magnetic field energy on a 2D slice along the plane y = 0.

the velocity and magnetic field, defined as functions of transverse
space coordinates with the following initial conditions:

ρ = 25/(36π), p = 5/(12π),

ux = − sin(2πz), uy = sin(2πx), uz = sin(2πy),
Bx = −B0 sin(2πz), By = B0 sin(4πx), Bz = B0 sin(4πy).

The simulation is performed in a cubic domain on a grid of N3
=

1203. The parameters for the 3D case are chosen as α = 0.5 and
C = 0.1.

The solution for T = 0.5 is presented in Figs. 13 and 14, where
the magnetic field energy is shown. The QMHD scheme allows one
to obtain the correct structure with all the discontinuities and to
perform the simulation for infinitely long time. In the long-time
simulation the flow decays into small structures and the kinetic
energy dissipates with time because of viscosity.

7.2. Propagation of a blast wave through a magnetized medium

In this problem, propagation of the initial finite perturbation
of the pressure through a medium with a superimposed magnetic
field [48] is investigated. The problem is solved in the cubic
computational domain with side dimension L = 1 and N3

= 1203

cells. In the initial moment, density ρ = 1 and pressure p = 1 in
the entire domain, except for the central part with radius r = 0.05,
where the pressure is p = 1000. A uniform magnetic field with
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Fig. 15. Test 7.2. A blast wave in a magnetized medium in three dimensions.
Distribution of the logarithm of the density in a 3D plot for T = 0.03. The values in
the representative regions are shown by figures.

Fig. 16. Test 7.2. A blast wave in a magnetized medium in three dimensions.
Distribution of the logarithm of the density on a 2D slice along the plane y = 0.

magnitude B = 10 is directed along the x-axis. The adiabatic index
γ = 1.4. Computations were done until T = 0.03 with Courant
number C = 0.1 and α = 0.5. The gradients of all parameters
were zero at the domain boundary.

Figs. 15 and 16 present the resulting numerical solution. Amag-
netic field introduces anisotropy in expansion of a substance. Un-
der the action of the pressure, the expansion accelerates along
magnetic field lines, and shockwaveswith higher kinetic andmag-
netic energy can be seen at the boundary in the middle part of the
domain. A rarefied area with lower density and pressure and the
prevalence of magnetic energy over the kinetic and thermal en-
ergy forms at the center of the computational domain. In spite of
the large initial difference in the pressure and high magnetization
of themedium in themiddle part of the computational domain, the
QMHD scheme provides positive values of the pressure and den-
sity, and describes all intrinsic discontinuities with good accuracy
for the scheme of first order in space and time at the final stage of
substance expansion.

8. Conclusions

We have presented an extension of the QGD approach for
the solution of problems of ideal magnetohydrodynamics. We
obtained the regularized, or QGD (QMHD), system of equations
for ideal magnetohydrodynamics by applying temporal averaging
to all physical parameters, including the magnetic field. The
numerical QMHD scheme is multidimensional, where evolution of
all physical quantities is done in a unsplit form by space directions.

We showed that on the basis of a unified approach, the QMHD
computational method applied for compressible magnetohydro-
dynamics allows the modeling of a wide range of nonstation-
ary MHD problems. For all test cases studied, computations show
steady convergence of the numerical solution to its exact solution
with shredding of the space grid, providing an accurate represen-
tation of the distribution for all physical quantities on the smooth
part of a solution and on discontinuities as well. By adjustment of
the tuning parameters, the quality of the numerical solution may
be increased.

The tests of the Orszag–Tang vortex and blastwave propagation
through amagnetizedmediumwere solved in the full 3D case. The
values of the tuning parameters α = 0.5 and Sc = Pr = 1 are
suitable for all problems in 1D, 2D, and 3D cases.

The disadvantage of the QMHD method is the first-order
approximation that requires a more detailed computational grid
to obtain a solution of quality similar to that produced by a
high-order scheme. The average relative errors produced by the
shock-captured high-order PPML scheme and by the first-order
QMHD scheme usually differ by about 2–3 times depending
on the problem (or could be even similar for some cases). On
the other hand, the high approximation orders are a little bit
formal since they are true only for smooth solutions, whereas
in most interesting applications the solutions are discontinuous.
This was demonstrated by test problems 5.1 and 5.2 with strong
discontinuities, where the PPML behaved like a first-order scheme.

The QMHDmethod is robust, relatively cheap in computational
cost, and requires no Riemann solvers and no additional mono-
tonization procedures—for example, limiting functions, which is a
very nice property especially for MHD simulations. The simplic-
ity of numerical realization and the uniformity of the algorithm
provide a natural realization on parallel computer systems us-
ing domain-decomposition technique. This allows one to use the
QMHD approach for ‘‘big’’ problems, where very large computa-
tional grids are required. The robustness, simplicity, and computa-
tional effectiveness of the QMHD approachmake it very promising
for use in simulations of complex 3D flows with strong magnetic
fields in a wide range of ‘‘difficult’’ engineering and scientific prob-
lems.
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Appendix

According to the constrained transport method, the compo-
nents (35) are transported to the edge centers of the cells (see
Fig. 3) as

Ez i+1/2,j+1/2,k =
1
4


Ez i+1/2,j,k + Ez i+1/2,j+1,k

+ Ez i,j+1/2,k + Ez i+1,j+1/2,k


+
∆y
8


∂Ez

∂y


i+1/2,j+1/4,k

−
∂Ez

∂y


i+1/2,j+3/4,k



+
∆x
8


∂Ez

∂x


i+1/4,j+1/2,k

−
∂Ez

∂x


i+3/4,j+1/2,k


, (37)
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where the corresponding derivatives are computed depending on
the sign of the velocity on the face:

∂Ez

∂y


i+1/2,j+1/4,k

=



∂Ez

∂y


i,j+1/4,k

, ux i+1/2,j,k > 0,

∂Ez

∂y


i+1,j+1/4,k

, ux i+1/2,j,k < 0,

1
2

 ∂Ez

∂y


i,j+1/4,k

+
∂Ez

∂y


i+1,j+1/4,k


,

otherwise,

with the differential expressions in the form

∂Ez

∂y


i,j+1/4,k

= 2


Ez i,j+1/2,k − Ez i,j,k

∆y


.

The values of the components of the electric field at the edge
centers of the cells that are obtained are used in (32) to compute
the magnetic field components at the face centers at the next time
point t+∆t (Fig. 17). The correspondingdifferential approximation
has the form

B̂x i+1/2,j,k = Bx i+1/2,j,k

−
∆t
∆y


Ez i+1/2,j+1/2,k − Ez i+1/2,j−1/2,k


+

∆t
∆z


Ey i+1/2,j,k+1/2 − Ey i+1/2,j,k−1/2


,

B̂y i,j+1/2,k = By i,j+1/2,k

+
∆t
∆x


Ez i+1/2,j+1/2,k − Ez i−1/2,j+1/2,k


−

∆t
∆z


Ex i,j+1/2,k+1/2 − Ex i,j+1/2,k−1/2


,

B̂z i,j,k+1/2 = Bz i,j,k+1/2

−
∆t
∆x


Ey i+1/2,j,k+1/2 − Ey i−1/2,j,k+1/2


+

∆t
∆y


Ex i,j+1/2,k+1/2 − Ex i,j−1/2,k+1/2


.

The values of the components of the magnetic field at the
centers of the cells are obtained from simple averaging (Fig. 18):

B̂x i,j,k =
1
2


B̂x i+1/2,j,k + B̂x i−1/2,j,k


,

B̂y i,j,k =
1
2


B̂y i,j+1/2,k + B̂y i,j−1/2,k


,

B̂z i,j,k =
1
2


B̂z i,j,k+1/2 + B̂x i,j,k−1/2


.

(38)

Themagnetic field obtained according to (38) is divergence free.
This can be shown by computation of the divergence in the apices
of the cells as

div B̂

i+1/2,j+1/2,k+1/2

=
1

4∆x


B̂x i+1,j,k + B̂x i+1,j+1,k − B̂x i,j,k − B̂x i,j+1,k


+

1
4∆x


B̂x i+1,j,k+1 + B̂x i+1,j+1,k+1 − B̂x i,j,k+1 − B̂x i,j+1,k+1


+

1
4∆y


B̂y i,j+1,k + B̂y i+1,j+1,k − B̂y i,j,k − B̂y i+1,j,k


+

1
4∆y


B̂y i,j+1,k+1 + B̂y i+1,j+1,k+1 − B̂y i,j,k+1 − B̂y i+1,j,k+1


+

1
4∆z


B̂z i,j,k+1 + B̂z i+1,j,k+1 − B̂z i,j,k − B̂z i+1,j,k


+

1
4∆z


B̂z i,j+1,k+1 + B̂z i+1,j+1,k+1 − B̂z i,j+1,k − B̂z i+1,j+1,k


.

Fig. 17. Computation of the magnetic field components at the time point t +∆t at
the face centers of the cells according to Faraday’s law of induction.

Fig. 18. Computation of the components of magnetic field at the time point t +∆t
at the cell centers.

Note that the algorithm described gives a shifted distribution
of the magnetic field relative to the distribution of hydrodynamic
quantities. This could be important for some tests on rough grids—
for example, in the case of propagation of a circularly polarized
Alfvén wave in 2D space, where the comparison between the
components of the magnetic field obtained on a rough grid and a
known analytical solution should be done. To study such problems,
the algorithm could be modified in the following way. The electric
field components, computed at the edge centers of the cells as in
(37), should be shifted to the face centers by averaging. In the 2D
case this gives

Ez i+1/2,j =
1
2


Ez i+1/2,j+1/2 + Ez i+1/2,j−1/2


,

Ez i,j+1/2 =
1
2


Ez i+1/2,j+1/2 + Ez i−1/2,j+1/2


.

Then, Faraday’s law of induction should be applied:

B̂x i,j = Bx i,j −
∆t
∆y


Ez i,j+1/2 − Ez i,j−1/2


,

B̂y i,j = By i,j +
∆t
∆x


Ez i+1/2,j − Ez i−1/2,j


.
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