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Abstract: A newmodel for calculation of circulation in shallow water basins is created based on the shallow 7
water equations taking into account the Coriolis force and quadratic friction on the bottom. Wind effects are 8
taken into account as forcing. Themain feature of themodel is a new numerical method based on regularized 9
shallowwater equations allowing one to construct the simple and sufficiently accurate numerical algorithms 10
possessing a number of advantages over existing methods. The paper provides a detailed description of all 11
construction steps of the model. 12
The developedmodel was implemented for the water area of the Azov Sea. The paper presents the modelling 13
of extreme surges in March 2013 and September 2014, the results of calculations are compared with observa- 14
tion data of hydrometeorological stations in Taganrog and Yeysk. 15
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The Azov Sea plays a significant role in life and economic activities of southern regions of Russia. A number 18
of large industrial cities are located on its coast. Stormwinds in this region can formmajor surge phenomena 19
damaging to the population and economy of coastal cities. Catastrophic rises (2–3 meters in the Taganrog 20
Bay) are usually formed with the periodicity of several years [7], those were on April 12, 1997; March 1, 2005; 21
September 30, 2010, but, in the 21st century they happened two years in a row, i.e., March 24–25, 2013 and 22
September 24–25, 2014. These events were described in detail in [20] and [19]. Note that none of these extreme 23
surgeswas predicted in advance. Therefore, the problem ofmodelling and prediction of extreme surges in the 24
Azov Sea is of great importance. 25

Due to the small transverse dimensions and depth of the Azov Sea, its dynamics and circulation can be 26
described as by 3Dmodels (for example, within the INMOMENTmodel (see [5, 6, 29]) or models developed at 27
the Marine Hydrophysical Institute (MHI) in Sevastopol [18]; see also the review in [24]) andwithin particular 28
2D models for the Azov Sea [16]–[22]. Numerical calculations for the surges of 2013–2014 were described in 29
[20] and [15]–[6]. Much attention was paid to raising the water level in the delta of the Don river [20]. 30

The models of the Azov Sea listed here usually use shallow water equations (SWE) of linearized form, 31
and their difference approximation is performed on staggered ‘B’ and ‘C’ grids according to Arakawa’s clas- 32
sification. The first one deteriorates the quality of the model making it less accurate, staggered calculation 33
grids complicate the difference algorithm, complicate the consideration of mass forces because calculation 34
nodes of the velocity components are shifted from each other and relative to the layer thickness. 35

The main factors determining flows in the area of the Azov Sea are wind, bottom topography, coastline 36
shape, andCoriolis force. One of the goals of this paper is to demonstrate the abilities of adequate descriptions 37
of the circulation and extreme surges in the Azov Sea using a model based on the complete two-dimensional 38
SWE. This approach is much easier than description within the framework of primitive 3D equations of large- 39
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scale sea circulation, it allows us to identify determining factors of the formation of sea level fluctuations1
and to estimate the cumulative effect of the parameters not included to the model. Successful application of2
the proposed model will allow us to use it for simulation of level fluctuations and barotropic flows in other3
shallow water basins and seas, for example, in the Baltic and Aral seas, the Northern Caspian, and also in4
artificial reservoirs.5

The main feature of the proposed method of numerical solution is the averaging of classic equations6
over small time interval (see, e.g., [1] or [3]). This procedure leads to the use of additional regularizing terms7
which introduce additional dissipation into the system thus providing the stability of numerical solution of8
the problem in a wide range of parameters. The equations obtained this way are called regularized SWE. This9
allows us to use non-staggered grid approximation. Many efficient numerical algorithms were constructed10
using this approximation, those algorithms can be easily implemented for parallel computations and natu-11
rally generalized to unstructured grids. The flux form of equations without linearization of the original SWE12
is used, which provides strict fulfillment of conservation laws for mass and momentum in the absence of ex-13
ternal forces. An important advantage of such numerical algorithms is the possibility of their generalization14
to the case of flows permitting formation and disappearance of dry bottom areas, i.e., formation of so-called15
drying and flooding zones [3].16

This method was used for solving many practical problems not related to circulation of seas and oceans.17
It was used to simulate vibrations of the liquid in tanks of cargo vessels [10], Faraday waves [11], tsunamis in18
the city of Miyako in the northeast Japan [1].19

Currently, the method does not take into account the curvature of the Earth surface and the problem is20
solved in a Cartesian coordinate system, which, however, is quite suitable for small water areas such as the21
Azov Sea. In addition, the stratification ofwater density in depth is not taken into account. Its accountingmay22
be a subject of further development of the approach used here in the case of numerical solution of primitive23
sea hydro-thermodynamics equations.24

In [12], this approach was applied for modelling seiche oscillations having the initial amplitude of one25
meter and being typical for the Azov Sea. In this paper, using the regularized shallow water equations, we26
simulate numerically the extreme surges in the Azov Sea occurred in 2013 and 2014. The external forces are27
the wind action, Coriolis force, and bottom friction. All calculations use uniform spatial grids. The results are28
compared with observations of the hydrometeorological stations in Taganrog and Yeysk.29

1 Formulation of the problem within the framework of shallow30

water model31

Weconsider a two-dimensional SWE system influx form. Taking into account external forces and the topology32
of the bottom, we can write the system in the following form:33
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Here h(x, y, t) is the depth of the fluid, ux(x, y, t) and uy(x, y, t) are the components of the flow velocity, g34
is the acceleration of gravity, f cor = 2Ω sinφ is the Coriolis parameter, where Ω = 7.2921 ⋅ 10−5 s−1 is the35
angular Earth rotation velocity, φ is the geographical latitude. The function b(x, y) describes the topography36
of the bottom from a certain reference level positioned below the sea bottom (see Figs. 1 and 2).37

The components of the wind friction force on the water surface are denoted by τw(x, y, t) and calculated38

as τi,w(x, y, t) = γ|W|Wi, where Wi(x, y, t) is the wind velocity component (m/s), |W| = √W2x +W2y is the39
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absolute value of the wind velocity, γ is the wind friction coefficient for the free water surface. The index i 1
stands for x and y components. 2

The projections of the bottom friction are denoted by τb(x, y, t) and calculatedwith the use of the relation 3

τi,b(x, y, t) = µ|u|ui, where µ is the coefficient of friction, |u| = √u2x + u2y is the absolute value of the flow 4
velocity. 5

The friction coefficients are the given values and for marine water areas are equal to µ = 2, 6 ⋅ 10−3 (see 6
[14]) and γ = 0.001 ρ0

ρw (1.1 + 0.0004|W|), where ρ0 = 1.3 ⋅ 10
−3 is the air density (g/cm3), ρw = 1.025 is the 7

water density (g/cm3) (see [5]), the coefficient 0.0004 has the dimensionality (m/s)−1. 8
The solution domain of the problem is the water area of the Azov Sea, the Kerch Strait, and the adja- 9

cent part of the Black Sea (see Fig. 1). It is located from 34∘456 E to 39∘2938 E and from 44∘484 N to 10
47∘1612 N, respectively. The topology of the bottom is given on a grid with the step 8, which corresponds 11
to the spatial mesh size of 250 m. 12

Due to relatively small linear sizes of the considered water areas relative to the Earth radius, the prob- 13
lem is considered in the Cartesian system of coordinates. The equilibrium depth h = h0 is chosen as initial 14
conditions, which corresponds to the undisturbed sea level, and zero flow velocities ux = uy = 0 m/s. The 15
boundary conditions along the shoreline use dry bottom conditions the implementation of which will be dis- 16
cussed below. In the region of the Black Sea (Figure 1, lower border) where the boundary is placed along a grid 17
line we apply either drift conditions, or free boundary conditions in the normal direction to the boundary. 18

The calculations were performed for the time interval from 2013 to 2014. The external forcing was given 19
in the form of wind flow velocity fields with the step of 1 hour calculated by the WRF model at the State 20
Oceanographic Institute [6]. The intervals of March 21–25, 2013 and September 21–25, 2014 were considered 21
for analysis. 22

2 Regularized shallow water equations 23

The numerical solution of the considered problem is implemented on the base of regularized shallow water 24
equations. These equations are obtained from original SWE (1.1) by application of the regularizing procedure 25
consisting in averaging over a small time interval of order τ. The procedure is applicable under the condition 26
that the general pattern weakly changes in small time interval, i.e., the main unknowns of the system, i.e., h, 27
ux, and uy can be expanded into a Tailor series relative to τ. As the result, the original system gets additional 28
summands of order O(τ). They have the form of second spatial derivatives. The presence of these summands 29
introduces additional dissipation into the scheme, which provides the stability of numerical solution and 30
allows us to use simple difference algorithms for approximation of equations. It is worth noting that this 31
dissipation is a natural corollary of discretization of SWE in time. 32

The regularized equations have the form 33
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Here jmx and jmy have the physical sense of regularized density of the fluid flow and are expressed in the form 34

jmx = h(ux − wx), jmy = h(uy − wy) (2.2)

where hui is the flow density within the shallowwater approximation and wi is the regularizing correction to 35
the velocity expressed as 36
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The components of the tensor Πi,j have the following form:1

Πxx = uxw∗x + R∗, Πyx = uyw∗x
Πxy = uxw∗y , Πyy = uyw∗y + R∗

(2.5)

where2
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The tensor Πi,j is asymmetric, but the value Λi,j = uj jm,i−Πi,j+δij 12 gh
2 remains symmetric, which allows3

us to represent the motion equations in symmetric form.4
Thenumerical solution is smoothedusing also the components of theNavier–Stokes viscous stress tensor5

where the viscosity coefficient is associated with the parameter τ. These components are added to Πi,j (2.5)6
and have the following form:7

ΠNSxx = τ
gh2
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∂ux
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The value h∗ has the form8

h∗ = h − τ (∂hux∂x +
∂huy
∂y ) . (2.9)

System of equations (2.1) is closely related to the original system of shallow water equations for τ = 09
and passes to system (1.1). The form of summands with the coefficient τ is determined by the form of origi-10
nal equations and hence the stationary solutions to original system (1.1) are stationary solutions to system11
(2.1). One of such solutions is the solution to the problem of a stationary reservoir with uneven bottom in the12
absence of external forces and initial perturbation (the problem of ‘resting lake’).13

The regularized SWE were studied theoretically in sufficient detail. The balance equation for the total14
mechanical energy was derived for such equations and also it was proved that this energy does not increase.15
Therefore, it was shown that the additional terms have a dissipative nature [30, 31]. A linearized system of16
regularized SWEwas constructed, energetic relations were obtained for it and the theorems of the asymptotic17
stability of the equilibrium solution and the uniqueness of the classic solution were proved [26]. Necessary18
and sufficient conditions of nonuniform and uniform parabolicity of regularized equations in the sense of19
Petrovskii were obtained [32]. The uniqueness of the classic solution to an initial boundary value problem in20
SWE approximation was proved in [23] and exact solutions were obtained for some particular cases. It was21
shown in [23, 26, 30–32] that if the functions h, ux, and uy are the solutions to the stationary shallow water22
equations, then they are also solutions to the stationary regularized SWE.23
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Currently, the theory of regularized SWE continues to develop. An approximation on unstructured grids 1
was first constructed for regularized SWE in [2]. In [13], regularized SWEwere derived in polar coordinates. In 2
[9], a system of equations for two-layer shallow water was constructed. 3

3 Difference approximation of the regularized system of shallow 4

water equations 5

Numerical solution of the regularized system is performedwith the use of a difference scheme explicit in time 6
and utilizing the integro-interpolation method with the approximation of spatial derivatives by the central 7
differences. Uniform spatial grids are used for calculations. Themesh sizes are ∆x = ∆y = 250m, the number 8
of grid nodes is 1521×1091, the time step is ∆t = 3.7 s which is determined by the Courant–Friedrichs-Lewy 9
stability condition subject to the phase velocity of long gravitational waves. 10

The values of the main variables h(x, y, t) and u(x, y, t) are specified at the nodes (i, j) of the spatial grid, 11
the values at half-integer points i ± 1/2, j and i, j ± 1/2 are calculated as the mean arithmetic value of the 12
variables at adjacent nodes, for example, hi±1/2,j = 0.5(hi,j + hi±1,j). The values at centers of the cells are 13
determined as arithmetic mean of the values at adjacent nodes, for example, hi+1/2,j+1/2 = 0.25(hi,j + hi+1,j + 14
hi,j+1 + hi+1,j+1). The values ux, uy, and b are approximated similarly. 15

The approximation of flux values relates to the half-integer points on edges. As an example, we present 16
the approximation for jx and jy: 17
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these expressions are approximated by central differences. The difference notation for these values was given 21
in [3]. As an example, we present the difference approximation of w∗,x: 22
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(3.2)

The values w∗,y, R∗, and Πi,j are approximated similarly. 23
The complete difference scheme for system of equations (2.1) has the following form: 24
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y
i,j = hi,ju

y
i,j + ∆t (τ

y,w − τy,b) + ∆t∆x (Π
xy
i+1/2,j − Π

xy
i−1/2,j)

−
∆t
∆x (u

y
i+1/2,j j

x
i+1/2,j − u

y
i−1/2,j j

x
i−1/2,j) −

1
2
g ∆t∆y (h

2
i,j+1/2 − h

2
i,j−1/2) +

∆t
∆y (Π

yy
i,j+1/2 − Π

yy
i,j−1/2)

−
∆t
∆y (u

y
i,j+1/2j

y
i,j+1/2 − u

y
i,j−1/2j

y
i,j−1/2) + ∆th

∗
y,i,j (−f

cuxi,j − g
bi,j+1/2 − bi,j−1/2

∆y ) .

(3.4)

The values with the hats, i.e., ĥ and û relate here to the upper time layer, ∆t denotes the time step, ∆x and ∆y1
are the spatial mesh sizes of the difference scheme.2

4 Specification of the numerical algorithm3

4.1 Stability of the numerical algorithm4

The stability of the numerical algorithm is provided by the summands with the coefficient τ. The value of τ5
is determined by the spatial grid mesh sizes and calculated in the following form:6

τ = α ∆x + ∆y
2c , c = √gh(x, y, t) (4.1)

where c is the propagation velocity of small perturbations calculated under the shallowwater approximation,7
0 < α < 1 is some numerical coefficient chosen according to some conditions of accuracy and stability of8
calculations. The time step is taken according to the Courant condition having in our problem the following9
form:10

∆t = β ∆x + ∆y
2cmax

(4.2)11

the Courant number 0 < β < 1 depends on the regularization parameter τ as β = β(α) and is taken in the12
process of calculations to ensure the monotonicity of the numerical solution.13

Condition (4.1) decreases the order of the difference scheme constructed above so it becomes a scheme of14
the first order of accuracy. However, as demonstrated by the practice of applying similar schemes for solving15
problems of gas dynamics and viscous incompressible fluid, these schemes have a series of positive features16
in calculation of the unstationary flows with large gradients. Concerning the shallow water equations in cal-17
culation of flows within the framework of one-dimensional Saint–Venant equations for problems of discon-18
tinuity disintegration, it was shown in [23] that the numerical method described above is more accurate than19
the Lax–Friedrichs scheme of the first order of accuracy.20

4.2 Implementation of the ‘well-balanced’ condition21

The following so-called condition of resting fluid holds for the regularized equations as well as for original22
system (1.1): if the fluid is in its rest state and external forces are absent, then the surface level of the liquid23
remains constant at any next time moment, i.e.,24

h + b = const. (4.3)
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The importance of this condition for the difference schemes is that under the absence of external forces 1
for an initial resting fluid the numerical solution should not produce nonphysical perturbations caused by 2
difference approximation of the bottom unevenness. 3

In the difference scheme constructed here the ‘well-balanced’ condition is determined by the value h∗. 4
If this condition is approximated as 5

h∗x,i,j =
1
2
(hi+1/2,j + hi−1/2,j) − τi,j (. . . )

h∗y,i,j =
1
2
(hi,j+1/2 + hi,j−1/2) − τi,j (. . . )

(4.4) 6

than it is fulfilled naturally, i.e., the equations turn to identities under the substitution of the difference so- 7
lution uxi,j = u

y
i,j = 0 and hi,j + bi,j = const The simplicity of approximation is explained by the fact that the 8

additional termswith the coefficient τ introduced into the numerical algorithmvanish on stationary solutions 9
and also by the first order of accuracy of the difference algorithm.More details concerning the ‘well-balanced’ 10
condition for regularized shallow water equations may be found in [3]. The construction of balanced differ- 11
ence schemes for algorithms of higher orders of accuracy meets considerable difficulties (see, e.g., [17]). 12

4.3 Dry bottom conditions 13

For problems related, for example, to numerical simulation of river and other types of floodwe have to specify 14
the boundaries of dry bottom regions, i.e., domains where the water level is assumed to be zero. To describe 15
such domains, we use the approach presented in [3] where one assumes that the fluid is in its rest state in 16
the dry bottom region. The boundary of the domain is determined by the clipping parameter εI,j which is the 17
minimum level of fluid, a smallness parameter for the sea level h below which the flow velocity and also the 18
regularizing terms related to τ must be equal to zero, i.e., for hi,j ⩽ εi,j we have 19

hi,j ⩽ εi,j : ui,j = 0, τ = 0. (4.5)

The choice of the clipping parameter εi,j is determined by the solved problem. 20
For problems with uneven bottom profile ε is associated with the topography gradient by the relation 21

ε > ∆x


∂b
∂x


(4.6) 22

i.e., the clipping parameter is variable and depends on the form of the bed surface and the chosen spatial 23
grid. For a two-dimensional rectangular grid we write (4.6) in the form 24

εi,j = ε0max((bi+1,j − bi,j), (bi,j − bi−1,j), (bi,j+1 − bi,j), (bi,j − bi,j−1)) (4.7)

where ε0 is an adjusting parameter. Note that the definition of the clipping parameter can vary depending on 25
the solved problem. 26

Within this problem, the dry bottom condition provides a fixed shoreline condition. This is due to the use 27
of a rather coarse grid (250meters) resulting in a sufficient difference of heights so that conditions (4.5) holds 28
on a shore. If we exclude the dry bottom conditions, thenwe get a flooding of coastal areas and coastline tres- 29
passing, however, the flooding estimate will not be correct due to a large mesh size. Note that in calculations 30
on a smaller grid the condition of dry bottom will allow us to track the coastline shift. 31

4.4 Implementation of the numerical algorithm 32

The numerical algorithm includes three adjusted parameters for the difference scheme, these are the dry 33
bottom parameter ε0, the Courant number β, and the regularization parameter α. In addition, parameters of 34
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Fig. 1: Bottom topography of the Azov Sea (m).

the physical model include the bottom topography b(x, y), the bottom friction coefficient µ, the wind velocity1
W(x, y, t), and the coefficient of wind friction on the water bed surface γ. The choice of optimal parameters of2
the model determines the accuracy and stability of numerical solution. For the difference scheme described3
here the parameters of the numerical algorithm were chosen in [12], namely, α = 0.1 and β = 0.5. The dry4
bottom parameter was chosen minimal so that the shoreline retains its form, in this case the parameter was5
ε0 = 0.96

Note that for numerical approximation of the Coriolis force entering original model equations (1.1) and7
containing the multiplier sinφ dependent on the latitude in the geocentric coordinate system, the values of8
sinφ are calculated at each node of the grid with a constant step in latitude equal to 8.9

We performed all the calculations with the use of an original code written in C++ and implemented with10
the OpenMP technology for parallel computations. The code outputs various data for different points of the11
domain in real time, i.e., with the step ∆t. The calculations for 7 days take about 7 hours of computer time12
on Intel(R) Core(TM) i7 personal computer with eight processors and 4 GHz clock rate. The code was not13
optimized, although preliminary estimates show that this can speed up the calculations to 2–4 times.14

5 Calculation results for storm surges in the Azov Sea15

5.1 Overall picture of extreme surge formation16

The prediction of storm surges arising from the passage of extreme cyclones in the Black Sea region is of spe-17
cial interest in the forecast of the dynamics in the Azov Sea. Belowwe present an analysis of the development18
of extreme runoff events in 2013 and 2014. The main stages of surge formation and the dynamics of sea level19
in large settlements will be considered. The results obtained for different bottom friction coefficients µ will20
be studied within the framework of this model.21

The typical circulations and sea level distributions are shown in Figs. 3 and 4 for 2013 and 2014, respec-22
tively. The color indicates the sea level relative to the equilibrium state, the arrows show stream lines. The23
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Fig. 2: Scheme of variables of shallow water equations. Grey domain indicates the bottom topography b(x, y), the solid line de-
notes the water height above the bottom (depth) h(x, y) of the basin, the symbol η denotes variations of the sea level relative
to the equilibrium.

(a) March 23, 12:00 (b) March 24, 00:00

(c) March 24, 11:00 (d) March 25, 09:00

Fig. 3: Deviation η of the sea level in the Azov Sea basin under storm surge on March 21–25, 2013. Calculations for µ =
0.00078.
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(a) September 23, 20:00 (b) September 24, 00:00

(c) September 24, 13:00 (d) September 25, 06:00

Fig. 4: Deviation η of the sea level in the Azov Sea basin under storm surge on September 21–25, 2014. Calculations for µ =
0.00078.

upper left corner of each figure shows main stream lines of the wind. All characteristics correspond to a par-1
ticular time moment indicated in the caption of the figure.2

Extreme surges of 2013 and 2014have similar patterns of formation and it is possible to distinguish several3
stages in them. At the first stage the surges were preceded by an extreme outflow of water from the Taganrog4
Bay into the central part of theAzov Sea causedby south-eastwind. The sea level in the TaganrogBaydropped5
by -50 cm. The typical circulation and distribution of sea level for this stage are shown in Figs. 3a and 4a,6
respectively.7

Further, within a few hours there was a sharp change of wind direction from south-east to south-west8
with hurricane-force wind gusts up to 32–37 m/s (see [19, 20]). Such powerful south-west wind flows in the9
Black Sea are called ‘chernomorka’. After the change of wind direction, the circulation of the Azov Sea also10
changed and the surge of water began in the Taganrog Bay (Figs. 3b and 4b).11

During the first half of the day the sea level increased rapidly. At the peak of the development of ‘cher-12
nomorka’ the water rise rate reached 1 m/h (see [19]). The distribution of the circulation and sea level at the13
time of maximal surge are shown in Figs. 3c and 4c. Note that the sea level exceeded +1 meter above the14
equilibrium state in the whole bay.15
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(a) (b)

Fig. 5: Time evolution of the sea level in the period of extreme surge on March 21–25, 2013 for the different coeflcients of bot-
tom friction (a) city of Taganrog, (b) city of Yeysk. The X axis corresponds to time t in days starting from March 21, the Y axis
corresponds to the sea level deviation (m). Red squares indicate observations on the water level posts at these points.

(a) (b)

Fig. 6: Time evolution of the sea level in the period of extreme surge on September 21–25, 2014 for different coeflcients of
bottom friction (a) city of Taganrog, (b) city of Yeysk. The X axis corresponds to time t in days starting from March 21, the Y axis
corresponds to the sea level deviation (m). Red squares indicate observations on the water level posts at these points.
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The second half of the day demonstrated a gradual eviction of water from the Taganrog Bay. The corre-1
sponding distributions of the circulation and sea level are shown in Figs. 3d and 4d.2

Thus, the four stages distinguished above completely describe the mechanism of formation of extreme3
surges in 2013 and 2014 in the Azov Sea. Note that the obtained pattern completely corresponds to the results4
of observations presented in [6, 19, 20].5

5.2 The picture of formation of extreme surges in large settlements6

To analyze the effect of bottom friction on the solution to the problem and compare with real observation7
data, we consider the graphs of sea level variation relative to the equilibrium state for different µ near the8
cities of Taganrog and Yeysk. These are shown in Figs. 5 and 6 for 2013 and 2014, respectively.9

Figure 5 shows the storm surge for March 21–25, 2013 for the cities of Yeysk and Taganrog. The X axis10
relates to the time t measured in days starting from March 21, 2013, the axis Y corresponds to the height11
above the equilibrium sea level in meters. Red squares indicate observations of meteorological stations in12
these cities. They have the 6 hour time step. Continuous lines indicate calculations of level height deviation13
from the equilibrium for various µ. The time step for these graphs is 4 seconds. The green line corresponds14
to µ = 0.0026, which is the value often specified in literature [14]. The blue line corresponds to µ = 0, i.e.,15
to calculations without the force of bottom friction, the black line corresponds to µ = 0.00078. For the city16
of Taganrog for µ = 0 we have the maximal height of the surge equal to hmax = 1.78m, the peak is attained17
at tmax = 03 : 36. For µ = 0.0026 we have hmax = 1.42 m, tmax = 13 : 12, for µ = 0.00078 we have18
hmax = 1.62 m, tmax = 09 : 36. It is clearly seen that the presence of the bottom friction force affects both19
the height and time of surge. Keeping it in the equations, we can calculate such problems more accurately.20
However, even if the friction force is absent, it is not possible to reproduce the maximum height of the surge.21

Figure 6 shows a similar graph for the storm surge on September 21–25, 2014 in the cities of Taganrog22
and Yeysk. For the city of Taganrog for µ = 0 the maximal height of surge was hmax = 5.48m, the peak was23
attained at tmax = 12 : 52. For µ = 0.0026 we have hmax = 2.22m, tmax = 16 : 15, for µ = 0.00078 we have24
hmax = 3.12m, tmax = 14 : 45. The coefficient of bottom friction µ = 0.00078most closely approximates the25
height of extreme surge in 2014.26

Thus, within the RSWE model we calculated the extreme surges of 2013 and 2014 in the Azov Sea. The27
general picture of formation of surges corresponds to the observation data described in [20] and [19]. We28
compared the dynamics of the equilibrium sea level with the data of meteorological stations near the cities29
of Taganrog and Yeysk. It was shown that the change of the bottom friction force affects both the height and30
time of the surge. For the extreme surge of 2014 we have chosen an optimal coefficient µ of bottom friction31
which reproduces the maximal height of the surge most accurately according to the data of meteorological32
observations. For the extreme surge of 2013, we did not succeed in reproducing the maximal height even in33
the absence of the friction force. The authors believe that this fact may be associated with inaccuracies of the34
specified wind characteristics.35

6 Main results and discussion36

The application of the shallow water model together with the algorithm of its implementation on the base of37
regularized equations allows us to obtain an adequate description of flows in the Azov Sea including extreme38
surges in its coastal zones. The equations take into account the bottom profile, actually measured wind forc-39
ing, influence of the Coriolis force, and bottom friction. With an appropriate choice of the value of the bottom40
friction, which turns out to be slightly less than the values known from the literature [14], the magnitude and41
time of extreme surges in the cities of Taganrog and Yeysk on September 21–25, 2014 coincideswith the data of42
meteorological observations in these cities. The height of the corresponding extreme surges in 2013 appears43
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in our calculations lower than that measured in observations. The authors believe that this fact may relate to 1
inaccuracies of the given wind. A similar conclusion was presented in [6]. 2

Thus, the consideration of natural factors used in the shallow water model is sufficient for using this 3
approach in simulation of the sea level changes and depth-averaged currents in other natural shallow water 4
areas, for example, in the Baltic and Aral seas, the Northern Caspian. 5

Specific feature of this computational model is the use of non-staggered grids, which facilitates the cal- 6
culation of the Coriolis force action, and the use of unstructured grids. The improvement of the spatial reso- 7
lution of hydrodynamic models near coastal zones is necessary to clarify the pattern of coastal currents [28], 8
a promising tool for this is the use of unstructured grids [27]. The rejection of the use of shifted grids makes 9
it much easier to write difference equations on unstructured grids. However, to improve the accuracy and 10
stability of difference discretizations of summands in equations (2.1) including Coriolis forces, the model can 11
be modified to use ‘C’ grids according to Arakawa’s classification and to separate in time the calculations of 12
the depth and flow values. 13

Another feature of the model is the absence of the procedure of linearization of equations and the use 14
of the full nonlinear model written in flux form. The latter provides a neat implementation of difference ana- 15
logues of conservation laws for the mass and momentum in the absence of external forces. We use a simple 16
integration scheme in time, which is convenient for parallelization of the problem. 17

The used SWE model is no longer an adequate approximation for deep sea modelling, for example, for 18
the Black Sea. The stratification of velocities, salinity, and temperature is highly heterogeneous in depth. This 19
does not permit us to describe even the structure of the main Black Sea current located in the upper layers 20
(see, e.g., [28]). However, to describe changes in fluid parameters with depth, we can construct a similar nu- 21
merical algorithmbasedon the regularizationofmore complexprimitive equations of hydro-thermodynamics 22
[23],[8] describing large-scale sea circulation. The authors believe that specific features of the algorithmmake 23
it competitive compared to existing expensive high-order methods, and its further development and use are 24
very promising for this class of problems. 25
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