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Abstract—The results of the direct numerical simulation of a supersonic f low around a cylindrical
blunt body with tail expansion are presented. The data obtained are compared with the results of lab-
oratory experiments for the Mach numbers 3 and 4 and the angles of attack of 10 and 20 degrees. The
results are obtained by using the quasi-gas-dynamic (QGD) equations.
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1. INTRODUCTION
The paper presents the results of the 3D direct numerical simulation of four variants of a supersonic

flow around an axisymmetric model with the formation of vortex shedding zones near its surface, which
can cause the generation of acoustic vibrations. For the selected model, there are laboratory measure-
ments and results of numerical simulations; therefore, this configuration can be considered as a test case
for evaluating the accuracy of the numerical approaches. The f low is calculated using quasi-gas-dynamic
(QGD) equations without the use of computational procedures with f low limiters traditional for such
problems. It was previously shown that a numerical algorithm based on the QGD equations allows us to
simulate turbulent f lows at low Reynolds and Mach numbers without involving additional turbulence
models. In the calculations presented below, turbulence models are also not used.

The aim of the work is to study the possibility of applying the QGD algorithm, implemented on an
unstructured tetrahedral computational grid, to model three-dimensional unsteady supersonic viscous gas
flows, even using not very good grids.

The model is a cylindrical blunt body with an extension in the tail. The general view and dimensions
of the model are shown in Fig. 1 [1].

2. STATEMENT OF THE PROBLEM AND GAS-DYNAMIC PARAMETERS
In the bench experiment described in [1], the model is located in the oncoming air f low, while the

angle of attack takes values of  and . The Mach numbers  and  are considered. The
Reynolds number related to the model length  m equals to  (at ) and Re =

 (at ). Note that the corresponding Reynolds numbers related to 1 m are 
(at ) and  (at ). The free f low parameters have the following values: the gas
constant  J/(kg K), the adiabatic index , the Prandtl number , and the index of
intermolecular interaction .

3. MATHEMATICAL MODEL
The system of QGD equations was constructed in [2–4] as a regularized form of the Navier–Stokes

(NS) system of equations. The QGD system can be considered as a system of NS equations averaged over
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Fig. 1. General view and size of model.
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a small space-time interval, which leads to the smoothing (regularization) of the original system of equa-
tions.

The QGD system of equations in Cartesian coordinates in the absence of external forces and heat
sources can be represented in the form [3]:

(1)

(2)

(3)

Here  is the gas density,  are the components of its macroscopic velocity, and  is the pressure. The
total energy of the unit volume  and the total specific enthalpy  of the ideal polytropic gas with the
adiabatic exponent  are calculated by the formulas

(4)

The mass f lux density vector  is defined as

(5)

The expressions for the viscous stress tensor  and heat f low  are written as

(6)

(7)

(8)

Here  is the internal energy of a unit mass of gas;  and  are the viscous stress tensor
and heat f lux in the NS system; , , and  are the coefficients of the shear and bulk viscosity and thermal
conductivity, respectively; and  is the temperature of the gas.

The shear viscosity  is defined via the temperature dependence [3],
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where  is the gas viscosity coefficient at temperature  and  is the index of intermolecular
interaction. The coefficient of bulk viscosity can be calculated using the approximation formula [3]

(10)
and the thermal conductivity coefficient is calculated as

(11)
Coefficient , which determines additional dissipation in the QGD algorithm, for a viscous polytropic

gas has the order of the characteristic time between collisions of the gas particles [2–4]. Its value is asso-
ciated with the shear viscosity coefficient and can be calculated in the form [3, 4]

(12)

where  is the Schmidt number, which for gases is close to unity.
To ensure the stability of the QGD algorithm when modeling supersonic f lows of dense gases, it is pos-

sible to modify the form of the dissipative coefficient  (12) by including in it a term depending on the spa-
tial grid step and flow parameters in the form

(13)

where  is the characteristic size of the spatial cell,  is the local speed of sound, and  is a tuning param-
eter, which in most cases is assumed to be a constant number of the order of 1 [2–5].

However, at high supersonic f low velocitie, introduced  viscosity is again insufficient. As the practice
of the numerical calculations shows, in these cases, to stabilize the numerical algorithm, it is possible to
use the presence of bulk viscosity by introducing an artificial additive in coefficient (10) in the form

(14)
The value of the regularizing additive here is also determined by the local parameters and depends on

the tuning factor . Such an introduction of artificial dissipation to the QGD equation was first used in
[6, 7].

The QGD algorithm is based on system (1)–(8) with dissipative coefficients (9)–(12) and artificial
additives (13) and (14).

4. NUMERICAL ALGORITHM
The computational domain is shown in Fig. 2. The incoming air f low is directed towards the positive

axis values  and the free-stream velocity vector lies in the plane .
An irregular tetrahedral computational grid is constructed using the freely available TetGen library [8].

Figure 3 shows the general view of the mesh, and Fig. 4 shows a fragment of the mesh in the vicinity of the
model at . On the surface of the model, the grid elements are rectangular isosceles triangles. The
main grid has the following parameters: the total number of nodes is 298403, there are 1574869 tetrahe-
dral elements, and there are 81312 nodes on the surface of the model. To study the influence of the mesh
size on the modeling accuracy, a coarser mesh with the following parameters was used: the total number
of nodes was 137991, there were 732815 tetrahedral elements, and there were 36 269 nodes on the surface
of the model. Thus, the additional mesh is approximately twice as coarse as the main one. As the calcula-
tions showed, not only the number of nodes but also the quality of the spatial grid significantly affects the
accuracy of the description of the f low fields.

For the numerical modeling, a substantially modified software package was used, created by
A.A Sverdlin and E.M. Kononov [9], which allows the calculation of unsteady viscous gas-dynamic f lows
for bodies of an arbitrary shape using tetrahedral unstructured spatial grids.

The gas-dynamic parameters (density, viscosity, pressure, temperature, energy) are reduced to dimen-
sionless form. The characteristic length (1 m), density , and speed of sound  in a upstream flow are
selected as the dimensional parameters. The values of the gas-dynamic parameters are determined at the
grid nodes. The finite-difference approximation of macroscopic QGD equations is constructed using the
control volume method. The solution of the initial-boundary-value problem for the grid analogues of
QGD equations is found by the explicit in time finite-difference scheme. The spatial derivatives are
approximated with a second order of accuracy; and the time derivatives, with the first order accuracy.

The QGD algorithm includes artificial dissipation with tuning factors  and  (13) and (14). Coeffi-
cient  was considered constant, and the following dependence on the local Mach number was used
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Fig. 2. General view of computational domain.
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to calculate coefficient : for  , for  , in the interval between the values of the
Mach numbers 1.5 and 2, coefficient  linearly increases with the Mach number [6].

At the initial moment, the incoming f low parameters are set at the inlet boundary. Inside the compu-
tational domain, the same parameters are set except for the velocity: the gas is stationary at the initial
moment.

At the inlet boundary, the values of the oncoming f low are kept constant. The soft-boundary condi-
tions are set at the exit boundary; they allow the gas to freely leave the area. The adhesion conditions are
set on the solid boundary of the streamlined body (the velocity vector is zero), and the additional bound-
ary condition of the QGD algorithm is used: the normal derivatives of pressure and density are zero [3–5].

As shown by the analytical estimates and the practice of numerical calculations [2–4], the QGD algo-
rithm is stable under the Courant condition. Therefore, the time step is calculated as follows:  = ,
where  is the Courant number,  is the characteristic local size of the spatial grid, and  is
the local speed of sound.

The calculations were carried out on a multiprocessor K-100 complex [10]. The software complex has
good scalability and sufficient parallelization efficiency. In the presented calculations, 128 processor cores
were used.

5. MODELING RESULTS

Figures 5–8 show in section  the density profiles for four combinations of the Mach number and
the angle of attack ( ) experimentally and numerically investigated in [1]. The streamlines are also
shown. Note that the implementation of the QGD algorithm used makes it possible to uniformly conduct
modeling in the region entirely surrounding the model, including behind the tail.

Figures 9–11 show the pressure distribution over the surface of the model, referred to the pressure in
the unperturbed flow, for the variant , . Figures 10 and 11 show the projection of the
model surface onto the plane ; they also show streamlines on the surface. Figure 10 corresponds to
the leeward side of the model ( ); Fig. 11, to the windward side ( ).
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Fig. 3. The mesh at .
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Fig. 4. Fragment of the mesh in vicinity of model at .
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Figure 12 shows one-dimensional pressure profiles on the model surface in the cross section ,
related to the pressure in the undisturbed flow, for the variant  and .

The solid line corresponds to the calculation on the main grid with the total number of nodes of
298403. The dashed line shows the results obtained on an additional, coarser grid with 137991 nodes. The
symbols show the results obtained in an experimental study of the f low around a model in [1]. The exper-
imental data are the pressure values obtained by means of sensors located on the surface of the model.

The triangular symbols correspond to the windward side of the model ( ); and the square symbols,
to the leeward side ( ). On the whole, we can see a very close agreement between the results obtained
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Fig. 5. , .
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in this work and the experimental data. It is also seen that the results obtained on a detailed grid (solid line)
are generally closer to the experimental data than those obtained on a coarser grid (dashed line).

The slight overstatement of the maximum pressure in the forward region of the model compared with
the experimental one is due to the influence of the grid, since on a more detailed grid the maximum pres-
sure is almost the same as the experimental one. On the windward side of the bow of the model, the sim-
ulation results practically coincide with the experimental values. Discrepancies are present in the tail
region. Note that in an experimental study of a f low around a model, it is mounted on a bracket, which
can affect the f low around the tail region. As for the leeward side of the model, the overestimation of the
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 12  No. 3  2020
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Fig. 8. , .
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simulation results compared with the experimental data is observed in the area of the bow. In this part
there is a swirling motion of the f low.

Note that in the analysis of the simulation results, a non-stationary f low was observed, especially in the
vortex region. The capabilities of the QGD algorithm for modeling unsteady f lows are also shown in [5].

Figure 13 shows one-dimensional pressure profiles on the model surface in cross section , related
to the pressure in the undisturbed flow, for the variant  and . The results were obtained
on the main grid with the 298403 nodes. The symbols show the results obtained in an experimental study
of the f low around a model [1] (the notation is the same as in Fig. 12). Compared to variant ,
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Fig. 11. , .
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 (Fig. 12), the discrepancy between the simulation results and the experiment is greater. This is
especially evident in the overestimation of the maximum pressure on the bow, as well as in the absence of
a shock wave on the conical part of the model ( ). This is likely to manifest excessive viscosity
introduced in the QGD algorithm, as well as a significant irregularity of the relatively coarse mesh used.
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Fig. 14. , .
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Figure 14, similarly to Fig. 10, depicts the projection of the leeward side ( ) of the model on the
plane  and the streamlines on the surface, for the variant  and . For comparison,
Fig. 15 shows a similar projection taken from [1]. It shows the streamlines representing the result of pro-
cessing the experimental data with the same parameters,  and . It can be seen that the
experimental picture of the streamlines (Fig. 15) is reproduced in general terms when modeling based on
the QGD algorithm (Fig. 14). This is especially noticeable in the arrangement of the paired vortices in
front of the conical part of the model.

Figure 16 shows the projection of the leeward side ( ) of the model on the plane  and stream-
lines on the surface for variant  and  = . The vortex motion does not occur in this part of
the surface; therefore, the f low pattern is almost symmetrical, as in the analogous Fig. 11. Figure 17 shows
an example of the distribution of the computational domain among 128 processors used in one of the cal-
culation variants, in the cross section . The total number of steps in the explicit difference scheme for
each of the variants is about . The required machine time is about 20 h.

The authors solve the modeling problem in the approximation of the NS equations, taking the viscous
terms into account, while the adhesion conditions are on the surface of the body. Thus, the question arises
of the resolution of the boundary layer, which is relevant for all numerical algorithms. To clarify this issue
in the presented calculations Figs. 18 and 19 show the velocity distribution  near the surface of the model
in the cross section of the front cylindrical part  m for variant  and . Figure 18
also shows the computational grid. Figure 19 shows a one-dimensional velocity profile  at  m
and , on which markers are applied corresponding to the boundaries of the mesh cells.

It can be seen that in the boundary layer there are about 7 grid cells. Thus, in modeling, a partial res-
olution of the boundary layer occurs. Note that the accuracy of the description of the boundary layer is
affected not only by the number of points inside it but also by the quality of the grid. The practice of
numerical calculations shows that the tetrahedral mesh is not optimal for describing the boundary layer. Nev-
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Fig. 16. , .
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Fig. 17. Distribution by processors.
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ertheless, even on the low-quality grid used in this work, the QGD algorithm allows one to obtain, on the
whole, adequate results of modeling the flow structure and pressure distribution over the model surface.

In [12], a numerical simulation of the supersonic f low around the same model is carried out as in the
present work. In this case, the Spalart–Allmaras and SST Menter turbulence models are used and a com-
parative analysis of the influence of the choice of the model on the f low pattern is carried out. The f low
structure obtained in this work (including vortices) and the pressure distribution over the model surface
are, on the whole, similar to the results obtained in [12]. However, the structure of the fronts of the shock
waves generated in the vicinity of the model in a supersonic f low is better resolved in [12]. Note that in
[12], a significantly higher quality and detailed computational grid was used containing 5963967 hexagonal
cells (for comparison, in this paper, the grid consists of 1574869 tetrahedra). The practice of numerical calcu-
lations shows that the quality of the grid significantly affects the accuracy of the numerical simulation.

One of the versions of the QGD algorithm is included as an additional computing core in the Open-
FOAM open source software package [11].
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 12  No. 3  2020
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Fig. 18. , .
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Fig. 19. Velocity profile near surface.
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