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Abstract—The results of numerical simulation of the problem of the interaction of a vortex f low with
a shock wave are presented on the example of using a quasi-gas dynamic (QGD) numerical algorithm,
which is implemented as the QGDFoam solver. The algorithm is based on regularized equations of gas
dynamics. The algorithm is implemented in the OpenFOAM open software package. The results are
compared with the published data obtained based on the Godunov type method of a high order of
accuracy and variants of the Kurganov–Tadmor method included in the open software package.

Keywords: control volume method, OpenFOAM package, quasi-gas dynamic algorithm, nonstation-
ary supersonic ideal gas f low

DOI: 10.1134/S2070048223020072

INTRODUCTION
Testing numerical methods for modeling gas-dynamic f lows remains relevant due to the wide range of

available numerical algorithms and the ever-expanding scope of these algorithms in practical calculations.
Moreover, studying the possibilities of algorithms for describing unsteady f lows is of particular impor-
tance. In this paper, the capabilities of four well-known algorithms for modeling inviscid f lows are shown
in the widespread problem of the development of an unsteady f low of an ideal gas, which is formed during
the interaction of a moving vortex formation with a shock wave. The formulation of this problem and
examples of modeling it based on schemes of a higher order of accuracy are given in a number of works,
among which we note [1, 2] and refer to them as the reference ones. Each algorithm introduces its own
characteristics in the results of numerical simulation, whose role can only be estimated from general con-
siderations due to the lack of an analytical solution of the problem or experimental data on it. Neverthe-
less, a comparison of the results of modeling this complex f low, obtained based on various numerical
approaches, makes it possible to reveal the features of the applied methods.

In this paper, on the example of mathematical modeling of this problem, the features of a quasi-gas
dynamic (QGD) algorithm are analyzed, together with three other computational approaches based on
the Kurganov–Tadmor scheme with second and first order of accuracy limiters.

Our attention is focused on the results of the calculations obtained based on the QGD algorithm [3, 4],
which is included in the open package OpenFOAM [5] as a QGDFoam solver. The calculations were car-
ried out in this package. The QGD algorithm is a difference approximation of the averaged equations of
gas dynamics [3]. The QGD algorithm has a number of tuning parameters, an adequate choice of which
makes it possible to uniformly model a wide range of gas f lows, including both supersonic and subsonic
modes. The dependence of the numerical solution on the choice of tuning parameters of the algorithm is
shown.

A detailed description of the problem statement is given in the first section of the study. In the second
part, the form of the QGD equations and the problem statement are given. Some features of the imple-
mentation of numerical algorithms and running the problem within the open package are described in the
third section. The fourth section shows the results of calculations, their grid convergence, and the effect
of the choice of the tuning parameters of the QGD algorithm. Here the results are obtained based on the
three computational methods included in the open package OpenFOAM as alternative computational
277
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cores. In conclusion, the obtained results are discussed and the speed efficiency of the algorithms used in
an open software package are compared.

PROBLEM STATEMENT

The general view of the f low under study at the final moment of the calculation time and the scheme
of the computational domain are shown in Figs. 1 and 2 in accordance with the works [1, 2].

The computational area has the form of a rectangle of size 2 × 1 (Fig. 1). At the initial moment of time,
a stationary shock wave with the Mach number  is located vertically along the line with coordinate x =
0.5, in front of which there is a region of vortex f low with counterclockwise rotation of the velocity. In the
left part of the region, the f low is a superposition of supersonic and vortex f lows. Behind the shock wave
there is a zone of subsonic f low.

The gas parameters to the left of the shock wave are indicated by index u (up); and on the right, by index
d (down). The components of the f low velocity are denoted by the symbols .

The initial conditions on the left side of the area  and the boundary conditions on the left
boundary (upstream) have the form

(1)

sM

v( , )u

≤ 0.5x

ρ = = γ = = = ρv1, , 0, 1, /( ).u u s u u u u uu M p T p R
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Fig. 1. An example of a f low pattern in the problem of inviscid interaction between a vortex and a shock wave according
to [2].

Fig. 2. Scheme of the computational domain and the initial conditions.
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SIMULATION OF VORTEX INTERACTION 279
On the right side, the conditions are specified to ensure a stationary shock wave is specified in
accordance with the Hugoniot conditions for the Mach number Ms. This corresponds to the parameters
of the gas

(2)

In this task, we have chosen . Mach number in combination with the adiabatic index of a pol-
ytropic gas γ = 1.4 and the value of the gas constant R = 1 determines the values of the parameters in front
of the shock wave and on the left boundary of the region, as well as the initial conditions for the calculation
behind the shock wave. The numerical values of these quantities are

Note that in order to obtain a stationary shock wave in the calculation, the values of the parameters to
the right of the discontinuity must be calculated sufficiently accurately. When applying the QGD algo-
rithm, the minimum accuracy involves ten significant digits.

At the initial moment of time, a vortex formation is located in front of the shock wave with the center
of the vortex at the point (0.25,0.5) with the inner radius a = 0.075 and outer radius b = 0.175. The values

 and  are the additional characteristic parameters of the vortex.

We denote the velocity field inside the vortex as . The angular velocity is given as follows:

Then,  and .
The temperature inside the vortex is found by calculating the integral

where

Calculating the intergals, we find
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using the fact that . The pressure in the vortex  is calculated as

The density  in the vortex zone is determined from the equation of state. In the left part of the
region in the vortex zone, the superposition of the values of velocities, temperatures, and pressures of the
supersonic f low with the parameters of the inlet boundary is set as the initial conditions: values (1) are
specified in the zone outside the vortex and the following values are specified in the zone inside the vortex:

In the right part of the region, the f low with the calculated parameters behind the shock wave (2) is spec-
ified.

The boundary conditions on the left boundary of the region are assumed to be constant, soft boundary
conditions are set on the right boundary of the region, and the horizontal walls are assumed to be rigid
boundaries with slip conditions for the velocity.

NUMERICAL ALGORITHM BASED ON REGULARIZED EQUATIONS
The system of regularized gas dynamic equations in the form of mass, momentum, and the total energy

balance equations in the notation adopted in OpenFOAM is as follows:

(4)

Here, the specific total energy is denoted as ,  is the specific internal energy,
, and  is the temperature. The sign  denotes the direct tensor product of vectors

and  is the unit tensor.

The mass f low vector, viscous stress tensor , and the heat f lux vector q are the traditional values sup-
plemented by regularizing additions with a small coefficient τ as a multiplier. In this case, the values of the
viscosity tensors and the heat f lux vector, determined by the Newton and Fourier laws, are calculated as

(5)

where  is the coefficient of dynamic viscosity,  is the coefficient of
thermal conductivity, and Pr is the Prandtl number.

The system of QGD equations (4) includes an additional artificial dissipation, which ensures the sta-
bility and accuracy of the difference algorithm. This algorithm is explicit in time and uses the finite vol-
ume method with the approximation of all spatial derivatives of the second order of accuracy using central
differences; see [3, 5]. The contribution of artificial dissipation is controlled by the coefficient

Here  is the local step size of the spatial grid, c is the local speed of sound, and α is the tuning parameter
of the algorithm, which usually lies within  and determines the accuracy of the algorithm and the
time step of the explicit calculation scheme.

When solving the Euler equations based on the QGD algorithms, the dynamic viscosity coefficient
and the related thermal conductivity coefficient are considered artificial. The viscosity coefficient is
calculated as
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Thus, for this problem, all dissipative coefficients τ, μ, and κ are considered as artificial parameters
that control the amount of introduced dissipation. The algorithm has three tuning parameters: numerical
coefficients α, , and . Further, we will refer to  and  as Sc and Pr. In all further
calculations, only the first two among them vary and the coefficient Pr is assumed to be one. As the prac-
tice of calculations shows, the effect of this parameter on the results is insignificant at values .

The boundary conditions for system (4) are set as follows: the specified conditions for the incoming
flow (1) are maintained at the inlet boundary

and at the outlet—the right boundary—mild drift conditions are used in the form of zero derivatives with
respect to x for all gas-dynamic quantities. Special subsonic conditions do not apply. On the upper and
lower boundaries of the region, the wall conditions with sliding are maintained; i.e.,

The problem is calculated up to dimensionless time .

FEATURES OF IMPLEMENTATION IN THE OpenFOAM PACKAGE
Numerical modeling in the OpenFOAM package involves the use of all quantities in a dimensional

form in the C unit system. In the problem under consideration, the initial quantities according to [1, 2]
are given in dimensionless form. To translate them into a dimensional form, we take into account that
R = 1; hence, the value  = 3.5 and , where  is the universal gas constant; and
hence, the value of the molar mass of the gas is chosen in the form M = 8314 g/mol.

The dimensional values for this problem are given in Table 1.
Setting the conditions on the boundaries of the calculation area is given in Table 2.
The OpenFOAM program implements a three-dimensional f low; hence, its three components are

specified in the velocity column. The computational grid and initial conditions are specified in the dictio-
naries of the OpenFOAM package. The value of the parameters of algorithm α and Sc is set in the QGD
section of the thermophysicalProperties dictionary of the constant folder.

The results of calculations using QGDFoam were compared with the data obtained based on the com-
putational core with the rhoCentralFoam solver. This solver is used to calculate compressible f lows and is
based on the so-called central-difference Kurganov schemes, which are versions of Godunov-type
schemes with an increased order of accuracy [6]. For the rhoCentralFoam solver, various constraint
options ψ(r) were used, whose form depends on the gradient of the function V in two adjacent grid
cells [7], where the argument of function r is calculated as

QGDSc QGDPr QGDSc QGDPr

∼Pr 1

= = = =v, 0, , ,u u uu u p p T T

∂ ∂ = = ∂ ∂ = ∂ ∂ =v/ 0, 0, / 0, / 0.u y T y p y

= 0.7t

= γ γ −/( 1)pC R = �/R R M �R

( ) ( )− += − −1 1 .n n n n
p p p pr V V V V
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Table 1. Gas parameters in dimensional form

Unit Value

Molar mass 8.314 kg/mol
Gas constant R 1 J/(kg K)
Adiabatic exponent γ 1.4

Heat capacity at constant pressure 3.5 J/(kg K)

M

pC

Table 2. Boundary conditions

Inlet Outlet Walls

p 1 ZeroGradient ZeroGradient
U (1.7748 0.0 0.0) ZeroGradient Slip
T 1 ZeroGradient ZeroGradient
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In the first case, the VanLeer scheme, which has the 2nd order of approximation, is used, while the limiter
used is  = / ; in the second case, the minmod scheme, which has the first order of
approximation, is used, with ; in the third case, the upwind scheme of the first
order is used; in this case, the limiter is not used and it is assumed .

The way to interpolate values from the center of a cell to its edge is described in the fvSchemes dictio-
nary in the interpolationSchemes section. All solvers used in the calculations were written in a form
adapted for solving the Euler equations.

CALCULATION RESULTS
In the numerical simulation of the f low evolution, complex gas-dynamic configurations are formed

with the appearance of various kinds of instabilities, which are both physical and computational in nature.
In the f low, in particular, the Kelvin–Helmholtz instability can occur in the shock wave curvature zone,
which is caused by the interaction of the vortex formation with it. Such instabilities have an inviscid nature
and must be described in terms of the Euler equations in a two-dimensional consideration. The presence
of viscous effects in the computational model can cause the formation of a viscous instability, for example,
Tollmien–Schlichting waves. All these features of the f low are accompanied by acoustic effects. It is dif-
ficult to distinguish between the physical and computational nature of the instabilities. Algorithms using
flow limiters, in addition to artificial ones, can also exclude physically justified f luctuations.

In [1], variants of the Godunov method of a higher order of accuracy are used with their adaptation to
solve the problem. Instabilities are suppressed by introducing additional artificial dissipation, which
replaces the dynamic viscosity coefficient in the terms  by the nonlinear coefficient proportional to
the square of the spatial grid step. The details of this algorithm and the features of its software implemen-
tation on the example of one-dimensional and two-dimensional problems are additionally given in [8].
The algorithm [1] was adapted in a special way to the problem of the interaction of a vortex with a shock
wave. In particular, to construct the reference solution on a grid with steps , the velocities
before and after the shock wave were recalculated in a special way to ensure the immobility of the shock
wave and to avoid computational problems related to the calculation of a slowly moving shock.

In the QGD algorithm, the stability of the calculation is ensured by the τ-terms. Additional oscillation
suppression is controlled by the Schmidt number Sc, which is included in the artificial dissipation coeffi-
cient  and may vary. Note that all artificial dissipative terms are proportional to the spacing of the
spatial grid. The latter makes the QGD algorithm a method of first order approximation in space, while
all spatial derivatives are approximated with the second order of accuracy.

In our calculations, we used a sequence of condensing grids with square cells 1/400, 1/800, and 1/1600
in size.

Calculations were made on a hybrid K-100 computing cluster
(https://www.kiam.ru/MVS/resources/k100.html). One to 36 processors were used.

The calculation results are presented in the form of density gradient fields. The figures show the fields
of Schlieren values, which, in accordance with [1], is calculated as  with limits
of the value change in the range (0.1–2.0 or 2.4).

CALCULATIONS USING THE QGD ALGORITHM
Development of the f low at successive time moments t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 is shown in

Fig. 3 with the calculation parameters α = 0.5 and Sc = 0 on the coarsest grid with the spatial step h =
1/400. It can be seen from the sequence of figures that by the time t = 0.3 the vortex passes through the
standing shock wave, distorting its profile. By the time t = 0.5, the shock wave profile returns to a state
close to the initial one. Numerous interactions of reflected shocks and shock waves are seen. For a com-
parison time of 0.7, the center of the vortex is at the point (1.02, 0.49).

Figure 4 shows the calculations with the search for the closest solution to the reference [1] solution,
which clarify the effect of the dissipative coefficients α and Sc. The calculations were carried out on a grid
with step h = 1/1600. The best result (bottom figure) was obtained for the values α = 0.1 and Sc = 0.1. It
shows the characteristic separation of the density into two parts in the center of the vortex and more dis-
tinct shock waves near the walls and at the outlet on the right than in the two upper figures. When calcu-
lating with α = 0.2 and Sc = 1.0, the center of the vortex appears to be less prominent. When calculating
with α = 0.2 and Sc = 0, the center of the vortex almost coincides with the best calculation, but the shock

ψ( )r +( )r r +(1 )r
ψ =( ) max(min( ,1),0)r r

= 0r

ΠNS

= 1/1200h

μQGD

( )= + ∇ρSch ln 1 / ln(10)
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Fig. 3. Flow development (Schlieren), from left to right, with t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Grid h = 1/400, ,
.
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waves appear more blurred. If necessary, it is possible to fine-tune the dissipative coefficients, in particu-
lar, to use the values of the dissipative coefficients that depend on the local values of the gas-dynamic
fields.

The presented pictures show that the variation of dissipative coefficients makes it possible to suppress
the oscillations arising in a gas-dynamic f low with varying degrees of efficiency. Thus, the user can explic-
itly control this process and ensure that nonphysical oscillations are suppressed and that oscillations of the
solution, which are of a physical nature, are preserved.

For a quantitative comparison of the calculations, the figures below show the density distributions
along two selected vertical lines. These lines are selected in accordance with [1] (line 3, ) and [2]
(line 5, ). To compare the results along line 3, the reference data are given from [1]; and along
line 5, from [2].

Figure 5 shows the grid convergence for density ρ along lines 3 and 5 at  and . The dis-
tributions for grids with steps h = 1/400, 1/800, and 1/1600 are given. The plots demonstrate the mono-
tonic convergence of the solution as the spatial mesh is thickened.

= 0.52x
= 1.65x

α = 0.2 =Sc 0
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Fig. 4. t = 0.7. Grid h = 1/1600, from top to bottom: α = 0.2, Sc = 1.0; α = 0.2, Sc = 0; α = 0.1, Sc = 0.1.
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Figure 6 shows the dependence of the numerical solution of the problem on the value of the smoothing
parameter α for density ρ along the same lines on the grid h = 1/400 at Sc = 0. Both graphs show the
convergence of the solution as the dissipation parameter decreases. In this case, for line 3, the value
α = 0.1 turns out to be insufficient to suppress the oscillations behind the shock wave. At the same time,
line 5 is located in the zone of a fairly smooth solution, and in this zone, the dissipation coefficient can be
reduced to 0.05.

CALCULATIONS USING VARIANTS OF THE rhoCentralFoam SOLVER

Figure 7 shows the calculations at time t = 0.7 for the original mesh h = 1/400. The calculations with
the QGDFoam solvers α = 0.5 and Sc = 0 are compared with three variants of the rhoCentralFoam solver
using upwind, minmod, and VanLeer constraints. The Courant number for all schemes is 0.2, except for
rhoCentralFoam VanLeer, for which the best calculation option for the Courant number of 0.1 is given.

It follows from the graphs that the second-order approximation schemes with VanLeer limiters and the
first-order minmod schemes introduce a large number of oscillations in the solution and turn out to be far
from the standard. The upwind first-order scheme turns out to be strongly dissipative and smoothens the
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 15  No. 2  2023
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Fig. 5. Grid convergence. Density ρ along lines 3 ( , left figure) and 5 ( , right figure) ,  for
spatial grids with steps h = 1/400 (2), 1/800 (3), 1/1600 (4); (1) is the reference solution.
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(3) α = 0.4, (4) α = 0.3, (5) α = 0.2, (6) α = 0.1, (7) α = 0.05.
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solution much more than the first two methods, and more than the QGD algorithm, whose difference
scheme also has the first-order of approximation in space. The general structure on the specified grid is
best drawn by the QGD method; see Fig. 3.

Figure 8 shows the density graphs ρ along lines 3 and 5 on the grid h = 1/400 for the same solvers. For
comparison, the graphs are supplemented with the result obtained for the QGD algorithm with α = 0.05
and Sc = 0. These plots show that the profiles obtained by the upwind and QGD methods turn out to be
close at large values of the QGD dissipation coefficient α = 0.5. For small values of this coefficient of α =
0.1 or 0.05, the results of the QGD calculations are close to the results obtained by the schemes of the sec-
ond order of accuracy with the VanLeer limiter. This agrees with the estimate of the order of approxima-
tion of the QGD schemes, which has the form O(αh) at , where  is a certain minimum
coefficient that ensures the stability of the numerical algorithm.

RESULTS AND DISCUSSION

Based on the example of solving a test problem on the unsteady interaction of a vortex f low with a shock
wave, we analyzed the features of the QGD algorithm included in the OpenFOAM platform, together

α > α >min 0 αmin
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Fig. 7. t = 0.7. Grid h = 1/400, upwind, minmod, and VanLeer constrained solvers (top to bottom).
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with three other computational cores included in the same platform: variants of the rhoCentralFoam
solver with VanLeer second-order accuracy limiters and first-order limiters of the minmod and upwind
order of accuracy. A detailed formulation of the problem and a comparison of the calculation results with
data from other methods are given.

It was shown that the QGD algorithm solves the problem and the results of calculations converge
monotonically to the solution considered as the reference solution, when the spatial grid is refined. As the
dissipation coefficients decrease to the stability limit of the algorithm, its accuracy also increases. At small
values of the dissipative coefficients, the results of the QGD calculations are close to the results obtained
by the scheme of the second-order of accuracy, and at large values, they are close to the results of calcu-
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 15  No. 2  2023

Table 3. Calculation time in seconds for 1000 steps on an 800 × 400 grid

QGDFoam QGDFoam reduced rhoCentralFoam 
VanLeer

rhoCentralFoam 
minmod

rhoCentralFoam 
upwind

18.3 13.8 10.9 10.0 6.2
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Fig. 8. Density ρ along lines 3 and 5, grid h = 1/400, (1) reference solution, (2) VanLeer with Courant number Co = 0.1,
(3) minmod, (4) upwind, (5) QGD, α = 0.1, Sc = 0, (6) QGD, α = 0.5, Sc = 0.
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lations by the scheme of the first-order of accuracy with upwind differences. A rather simple adjustment
of the dissipative coefficients in the QGD algorithm allows us to tune it to obtain a solution with the
required accuracy.

To evaluate the computational efficiency of the methods, Table 3 compares the computation time of
the task when it is implemented on one processor of the K-100 computer system. An example of solving
the problem in 1000 time steps on a grid , i.e., on a grid with 800 × 400 points, was considered.
The results presented are obtained after averaging the calculation time over five calculation options for
each scheme. The calculation times for QGDFoam, QGDFoam reduced, rhoCentralFoam VanLeer,
rhoCentralFoam minmod, and rhoCentralFoam upwind are presented.

The QGDFoam algorithm is the most time consuming algorithm, due to the computational complex-
ity of the calculation τ terms that include mixed spatial derivatives. In the QGDFoam reduced version,
these mixed derivatives are disabled, and the algorithm is less computationally consuming. At the same
time, in this problem, the calculation results for both versions of the algorithm turn out to be quite close
to each other. Variants of rhoCentralFoam with the specified constraints are more efficient in terms of cal-
culation time; however, the accuracy of the solution and the qualitative form of the obtained density dis-
tributions turn out to be low.

Thus, this study shows that the difference scheme of the first order of approximation, built based on
QGD equations, with an appropriate selection of numerical coefficients in artificial dissipative terms,
solves the problem sufficiently accurately. The obtained results show that in order to increase the accuracy
of the calculations, the transition to high-order approximation algorithms can be supplemented by the use
of first-order approximation algorithms with highly nonlinear and finely tuned dissipative terms.
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