УДК 519.63

Моделирование нестационарного дозвукового обтекания осесимметричного тела с турбулизатором^{*}

И.А. Широков, Т.Г. Елизарова

Институт прикладной математики им. М. В. Келдыша РАН, Москва

E-mail: ivanshirokov@inbox.ru

Представлены результаты численного моделирования внешнего дозвукового нестационарного обтекания осесимметричной модели. Моделирование проводится на основе квазигазодинамического алгоритма, реализованного на неструктурированной тетраэдральной сетке. На поверхности модели располагается турбулизатор в виде кольцеобразного выступа, который фиксирует положение ламинарно-турбулентного перехода. Постановка задачи соответствует экспериментам по продувке рассматриваемой модели в аэродинамической турбе. Картина течения, распределение коэффициента давления по поверхности и параметры турбулентных пульсаций демонстрируют удовлетворительное качественное и количественное согласование с экспериментальными данными.

Ключевые слова: квазигазодинамические (КГД) уравнения, дозвуковое обтекание, ламинарно-турбулентный переход.

Введение

В работах [1, 2] были представлены экспериментальные результаты, полученные при исследовании внешнего обтекания осесимметричной модели в аэродинамической трубе на дозвуковых режимах. Общий вид модели показан на рис. 1. В указанных исследованиях были получены характеристики пульсаций скорости, возникающие из-за ламинарно-турбулентного перехода при отрыве потока, и приведена визуализация течения на поверхности тела. В некоторых экспериментах, описанных в этих работах, использовался турбулизатор в виде проволоки, натянутой поперек модели.

Численное исследование отрыва потока на гладкой поверхности представляет существенные трудности, так как в этом случае положение области формирования ламинарно-турбулентного перехода не фиксируется. В ряде экспериментов на гладкой поверхности располагался турбулизатор в виде концентрического выступа, который задает положение отрыва потока. В настоящей работе для моделирования эффектов отрыва и ламинарно-турбулентного перехода в нем используется квазигазодинамический (КГД) алгоритм [3-6], в котором роль турбулентной диссипации играет специфическая искусственная вязкость, отличающая КГД-уравнения от уравнений Навье–Стокса.

^{*} Работа выполнена при поддержке Российского Научного Фонда, проект 19-11-00169.

[©] Широков И.А., Елизарова Т.Г., 2022

Широков И.А., Елизарова Т.Г.

Рис. 1. Общий вид модели.

Ранее КГД-алгоритм одинаково успешно применялся для моделирования как дозвуковых [7, 8], так и сверхзвуковых течений [9, 10]. Он продемонстри-

ровал свою эффективность при моделировании ламинарно-турбулентного перехода в сжимаемом газе на примере задачи о распаде вихря Тейлора–Грина [7] и задачи о турбулентном течении Куэтта [8]. В обоих случаях было получено хорошее согласие с эталонными расчетными и экспериментальными данными как по скорости диссипации кинетической энергии в задаче о распаде вихря, так и по величине пульсационных составляющих скорости в задаче течения Куэтта.

В представленной работе КГД-алгоритм используется для моделирования турбулентного течения газа, вызванного турбулизатором при обтекании осесимметричной модели (рис. 1). Параметры потока соответствуют одному из экспериментов работы [1]: скорость набегающего потока $U_0 = 10$ м/с, число Маха Ма = 0,0294, число Рейнольдса, отнесенное к 1 м, составляет Re = 630000, угол атаки равен 4°. Принимаем, что газовая постоянная R = 287 Дж/(кг·К), показатель адиабаты $\gamma = 7/5$, скорость звука в набегающем потоке — 340 м/с.

Опыт, полученный при моделировании дозвукового обтекания осесимметричного тела, показывает, что картина обтекания и расположение срывов потока сильно зависят от точности аппроксимации формы тела и качества расчетной сетки [11]. Сетка, ячейки которой имеют относительно правильную форму, является предпочтительной, поскольку аппроксимация макроскопических уравнений на такой сетке происходит точнее. В работе [12] описывался вполне универсальный алгоритм, позволяющий строить приблизительно равномерную сетку на поверхности произвольной осесимметричной модели. При этом форма ячеек поверхностной сетки была близка к квадратной, а форма модели воспроизведена достаточно точно. Он заключается в следующем. После того, как поверхностная сетка построена, на ее основе с помощью генератора TetGen [13] строится нерегулярная тетраэдральная расчетная сетка в пространстве вокруг модели. Вблизи поверхности ячейки пространственной сетки имеют форму, близкую к правильным тетраэдрам. Данный алгоритм применяется и в настоящей работе. При этом параметры пространственной сетки следующие: общее число точек — 933838, число тетраэдральных ячеек — 5503321, число точек на поверхности модели — 93576, число треугольных ячеек на поверхности модели — 187148. Характерный размер поверхностной ячейки — 0,004 м (в работе [12] этот параметр обозначен Step). При построении сетки и далее в работе используется декартова система координат (x, y, z) с осью x, совпадающей с осью симметрии модели, при этом начало координат совпадает с передним концом модели.

Турбулизатор *V*, M у, м 0,4 0,025 0,2 0,020 0 0,015 0,010 -0,20,05 -0,40 0,2 0,4 0,6 0,8 1,0 0,02 х, м -0,20 1,2 х, м -0,02-0.010,01 0

На рис. 2a приведен общий вид сетки в сечении z = 0 (вектор скорости набегающего потока лежит в этом же сечении) и указано положение турбулизатора. На рис. 2b

Рис. 2. Общий вид сетки (*a*) и фрагмент сетки в носовой части (*b*) в сечении z = 0.

показан фрагмент сетки в окрестности носовой части модели, при этом вблизи поверхности хорошо видны ячейки относительно правильной формы.

Использование сетки, ячейки которой близки по форме к правильным тетраэдрам в области пограничного слоя, позволяет улучшить аппроксимацию макроскопических уравнений. В свою очередь, это дает возможность проводить расчеты с малым значением дополнительной вязкости, но большим числом Куранта (0,5) и за относительно небольшое машинное время получить развитую картину срыва потока и ламинарнотурбулентного перехода.

Турбулизатор представляет собой кольцеобразный выступ на поверхности модели, расположенный в сечении x = 0,374 м, как и в работе [2]. Толщина выступа составляет около 0,005 м, высота — около 0,02 м.

Математическая модель и метод численного решения

Моделирование внешнего дозвукового обтекания модели вязким газом проводится на основе системы квазигазодинамических уравнений для идеального политропного газа, построенной в работах [3-5]. Вид КГД-системы в декартовых координатах, который использовался при проведении данных расчетов, приведен, например, в публикациях [9, 12]. Основными газодинамическими параметрами являются плотность, три компоненты макроскопической скорости и давление. Температура определяется через уравнение состояния идеального газа. Энергия единицы объема газа вычисляется как сумма кинетической и внутренней энергий. Для моделирования дозвукового обтекания определим коэффициент сдвиговой вязкости μ через температурную зависимость:

$$\mu = \mu_0 (T / T_0)^{\omega}, \tag{1}$$

где μ_0 — вязкость газа при температуре набегающего потока T_0 , $\omega = 0,74$ — показатель межмолекулярного взаимодействия. Коэффициент теплопроводности вычислим как

$$\kappa = \mu / (\Pr(\gamma - 1)), \tag{2}$$

где Pr = 0,737 — число Прандтля. Коэффициент объемной вязкости на основе аппроксимационной формулы будет иметь вид:

$$\varsigma = \mu((5/3) - \gamma) \,. \tag{3}$$

Коэффициент *т*, определяющий дополнительную диссипацию в КГД алгоритме, для вязкого политропного газа имеет порядок характерного времени между столкновениями частиц газа. В проводимых расчетах его величина связывается с характерным размером пространственной ячейки *h* следующим образом:

$$\tau = \alpha h/c, \tag{4}$$

где
 c — локальная скорость звука, $\alpha = 0,05$ — настроечный параметр.

Введенная таким образом искусственная вязкость позволяет проводить моделирование дозвуковых турбулентных течений, при этом в модели существует единственный настроечный параметр α .

Для расчетов на нерегулярной тетраэдральной сетке применялся доработанный программный комплекс [14], позволяющий выполнять расчеты нестационарных вязких газодинамических течений при внешнем обтекании тел произвольной формы на основе КГД алгоритма. Для использования указанного комплекса газодинамические параметры приводятся к безразмерному виду. В качестве размерных параметров выбраны характерная длина $L_0 = 1$ м, плотность ρ_0 и скорость звука c_0 в набегающем потоке. При этом в безразмерных переменных уравнение состояния записывается как $p = \rho T / \gamma$, скорость звука $c_0 = \sqrt{T}$, число Маха Ма = U_0 / c_0 , число Рейнольдса Re = $\rho_0 U_0 L_0 / \mu_0$,

коэффициент молекулярной сдвиговой вязкости $\mu = (Ma / Re)T^{\omega}$. Конечно-разностная аппроксимация макроскопических КГД уравнений строится методом контрольных объемов. В силу того, что диссипативные коэффициенты зависят от локальных параметров, на тетраэдральной сетке алгоритм имеет первый порядок аппроксимации по пространству.

В начальный момент на входной границе задаются параметры набегающего потока, внутри расчетной области задаются такие же параметры, кроме скорости: газ в начальный момент неподвижен. В безразмерном виде начальные условия имеют вид:

$$\rho = 1, T = 1, p = 1/\gamma.$$

Поскольку рассматривается дозвуковое внешнее обтекание, граничные условия ставятся следующим образом [4, 12]. На твердой границе модели ставятся условия прилипания (вектор скорости равен нулю), при этом используется дополнительное граничное условие КГД-алгоритма: нормальные производные давления и плотности на твердой стенке равны нулю (условия на твердой границе модели считаются адиабатическими). На входной границе значения скорости и плотности набегающего потока поддерживаются постоянными. Нормальная производная давления на входной границе поддерживается равной нулю. При этом температура на входе вычисляется из уравнения состояния. Такое граничное условие является неотражающим и позволяет возмущениям распространяться потока.

На выходной и боковых границах ставятся условия сноса (равенство нулю нормальных производных) для скорости. Давление на выходной и боковых границах поддерживается постоянным и равным начальному давлению в невозмущенном набегающем потоке. Температура вычисляется из уравнения состояния. Граничные условия на выходе также являются неотражающими и допускают распространение возмущений вниз по потоку

Решение начально-краевой задачи для сеточных аналогов КГД-уравнений с учетом соотношений (1)–(4) находится по явной конечно-разностной схеме, имеющий первый порядок аппроксимации по времени. Шаг по времени вычисляется как $h_t = \beta h / c \approx 9 \cdot 10^{-8}$ с, где $\beta = 0.5$ — число Куранта, h и c — те же локальные параметры, что и в соотношении (4).

Расчеты проводились с помощью суперкомпьютера К-100, установленного в Центре коллективного пользования ИПМ им. М.В. Келдыша РАН [15], при этом использовалось распараллеливание вычислений, основанное на декомпозиции расчетной области с применением стандарта передачи сообщений МРІ и библиотеки METIS. Одновременно использовались 128 процессорных ядер. Далее представлены расчеты до 0,26 с размерного времени (87 безразмерного времени). Было сделано около 3.10⁶ итераций.

Рис. 3. Картина течения при z = 0 и t = 0,095 с (*a*), t = 0,155 с (*b*).

Рис. 4. Картина течения при y = 0 и t = 0,095 с (*a*), t = 0,155 с (*b*).

Картина отрывного течения и формирование вихрей

На рис. 3 и 4 представлены распределения коэффициента давления $C_p = 2(p - p_0)/(\rho_0 U_0^2)$ (в безразмерных переменных $C_p = 2(p - 1/\gamma)/Ma^2$) соответственно в сечениях z = 0 и y = 0. Также здесь приведены линии тока. Рис. За и 4a относятся к моменту времени t = 0,095 с (к этому моменту времени уже сформировалась область турбулентного течения), а рис. 3b и 4b — к t = 0,155 с. Кроме того, на рисунках заметны области повышения давления перед носовой частью (коэффициент давления принимает значения около единицы) и перед турбулизатором. Также хорошо видны области падения давления в разные моменты времени наглядно демонстрирует нестационарный характер обтекания. Сравнение картин в сечениях z = 0 и y = 0 показывает существенно трехмерный характер вихревого течения за турбулизатором.

На рис. 5 показано распределение коэффициента давления по поверхности модели при t = 0,095 с. Здесь также видна область падения давления за турбулизатором и несимметричность области повышения давления, вызванная ненулевым углом атаки. Значения C_p на поверхности модели меняются от 1,1 (скачок в носовой части) до -0,7(за турбулизатором). В хвостовой части модели при x > 0,6 значения C_p меняются от -0,1до 0,1. Для качественного сопоставления значений C_p с экспериментальными данными

следует отметить, что в работе [2] приводилось распределение C_p в пограничном слое в плоскости симметрии модели, полученное в аэродинамической трубе при $U_0 = 16$ м/с и нулевом угле атаки без турбулизатора. Экспериментальные значения C_p меняются от -0,2 до 0 при x > 0,3, т.е. без учета скачка

Рис. 5. Распределение коэффициента давления по поверхности.

Рис. 6. Пространственные линии тока вблизи поверхности модели.

Рис. 7. Линии тока и уровни C_p в пограничном слое, полученные в результате расчета.

давления в носовой части. Таким обра-

зом, расчетные значения коэффициента давления по порядку величины согласуются с экспериментальными.

На рис. 6 показаны пространственные линии тока близи поверхности модели при t = 0,155 с и хорошо видна вихревая структура течения.

На рис. 7 отображены линии тока в пограничном слое и уровни коэффициента давления на поверхности в сечении z = 0, t = 0,095 с. Размер зоны отрыва на рис. 7 достаточно хорошо соответствует величине зоны отрыва, полученной экспериментально. Для качественного сравнения на рис. 8 приведена типичная визуализация линий тока в пограничном слое, полученная в аэродинамической трубе при $U_0 = 20$ м/с и угле атаки 20° [2]. При этом турбулизатор в эксперименте располагался так же, как и в настоящей работе.

Эволюция параметров во времени и спектры пульсаций

На рис. 9, 10 показаны профили скорости и коэффициента давления в зависимости от времени в трех точках вблизи поверхности, координаты которых указаны (в метрах) в виде (x, y, z). Две точки выбраны за турбулизатором: (0,45, 0, -0,12), (0,45, 0,12, 0). Третья точка (0,30, 0, -0.12) лежит перед турбулизатором. Рис. 9*a* демонстрирует развитые колебания модуля скорости в двух точках за турбулизатором (кривые *l* и *2*) и практически отсутствие колебаний перед турбулизатором (кривая *3*). На рис. 9*b* приведены соответствующие спектры пульсаций модуля скорости, полученные с помощью дискретного преобразования Фурье.

I - x = 0,45 m, y = 0,12 m, z = 0 m, 2 - x = 0,45 m, y = 0 m, z = -0,12 m, 3 - x = 0,3 m, y = 0 m, z = -0,12 m.

а: I - x = 0,45, y = 0,12, z = 0 м, 2 - x = 0,45, y = 0, z = -0,12 м, 3 - x = 0,3, y = 0, z = -0,12 м; b: профили компонент скорости $U_x(I), U_y(2), U_z(3)$ в точке x = 45, y = 0, z = -0,12 м.

Аналогично рисунку 9, рис. 10*a* показывает развитые колебания коэффициента давления за турбулизатором (кривые *l* и *2*) и практически отсутствие колебаний перед турбулизатором (кривая *3*). При этом видны колебания слабой интенсивности, затухающие к моменту времени $t \approx 0,16$ с, вызванные влиянием начальных условий. На рис. 10*b* приведены профили трех компонент скорости в точке (0,45, 0, -0,12) за турбулизатором.

Ниже в таблице представлены характеристики пульсаций в рассматриваемых трех точках, полученные в результате моделирования: среднее значение модуля скорости $|U|^m$, величина среднеквадратичных пульсаций |U|' и характерные частоты колебаний. Для качественного сравнения в таблице приведены аналогичные характеристики пульсаций скорости в пристеночном слое, полученные экспериментально при тех же параметрах потока, что и в настоящей работе ($U_0 = 10 \text{ м/c}$, Re = 630000, угол атаки 4°), но без турбулизатора [1]. Поскольку в указанной работе приведены распределения пульсационных параметров вдоль поверхности, а также профили в направлении, перпендикулярном поверхности модели, в таблице показаны только нижний и верхний пределы экспериментальных значений этих параметров, а также характерные частоты пульсаций.

Из рис. 9, 10 и данных таблицы можно сделать вывод, что за турбулизатором (x = 0,45 м) образуются колебания, при этом среднеквадратичные пульсации скорости |U|' имеют порядок 1 м/с, что соответствует характерной величине развитых пульсаций скорости в пристеночном слое, полученной в экспериментах [1]. Частоты низкочастотных колебаний потока, полученные в результате моделирования, также в целом соответствуют частотам, измеренным в экспериментах [1]. Высокочастотные колебания реального течения, наблюдаемые в эксперименте, не разрешаются при моделировании. При этом перед турбулизатором (x = 0,3) колебания практически отсутствуют.

Таблица

Координаты <i>U</i> <i>x, y, z</i> , м	$\left U \right ^{\mathrm{m}}$ (среднее), м/с	$\left U ight '$ (пульсационное), м/с	Характерные частоты, Гц
0, 3, 0, -0, 12	9,616	0,01034	25
$0,\!45, 0, -0,\!12$	2,631	0,8332	25, 50
0,45, 0,12, 0	2,348	0,9552	25, 50
Эксперимент	0-10	0.01 - 1.5	25, 50, 100, 150

Характеристики пульсаций скорости

Заключение

Результаты, полученные при моделировании дозвукового обтекания осесимметричного тела с использованием турбулизатора, продемонстрировали возможности КГДалгоритма при исследовании ламинарно-турбулентного перехода, возникающего при экспериментальных исследованиях внешнего обтекания. Получено хорошее качественное согласие картины течения и распределения коэффициента давления по поверхности, а также удовлетворительное количественное согласование параметров турбулентных пульсаций с экспериментальными данными. При этом КГД-алгоритм позволяет проводить моделирование ламинарно-турбулентного перехода без дополнительных средств турбулизации потока, таких как случайное возмущение поля течения, возмущения в виде волн Толлмина–Шлихтинга или введение вынужденных колебаний.

Список литературы

- 1. Довгаль А.В., Занин Б.Ю., Сорокин А.М. Устойчивость ламинарного течения на теле вращения, расположенном под углом к набегающему потоку // Теплофизика и аэромеханика. 2014. Т. 21, № 4. С. 419–434.
- Zanin B.Yu., Dovgal A.V., Sorokin A.M. Visualization of boundary layer separation on an axisymmetric body // AIP Conference Proceedings 2027. 2018. P. 030131-1–030131-4.
- **3.** Chetverushkin B.N. Kinetic schemes and quasi-gas dynamic system of equations. Barselona: CIMNE, 2008. 298 p.
- 4. Elizarova T.G. Quasi-gas dynamic equations. Dordrecht: Springer, 2009. 300 p.
- 5. Шеретов Ю.В. Регуляризованные уравнения гидродинамики. Тверь: Тверской гос. ун-т, 2016. 222 с.
- 6. Елизарова Т.Г., Широков И.А. Регуляризованные уравнения и примеры их использования при моделировании газодинамических течений. М.: МАКС Пресс, 2017. 136 с.
- Shirokov I.A., Elizarova T.G. Simulation of laminar-turbulent transition in compressible Taylor-Green flow basing on quasi-gas dynamic equations // J. of Turbulence. 2014. Vol. 15, Iss. 10. P. 707–730.
- 8. Широков И.А., Елизарова Т.Г. Применение квазигазодинамических уравнений к моделированию пристеночных турбулентных течений // Тр. ф-та ВМК МГУ им. М.В. Ломоносова. Прикладная математика и информатика / Под ред. В.И. Дмитриева. М.: МАКС Пресс, 2016. № 51. С. 52–80.
- 9. Епихин А.С., Елизарова Т.Г. Численное моделирование газодинамики процесса взаимодействия недорасширенных струй с наклонной преградой. // Теплофизика и аэромеханика. 2021. Т. 28, № 4. С. 509–517.
- Широков И.А., Елизарова Т.Г. Вычислительный эксперимент в задаче сверхзвукового обтекания затупленного тела с хвостовым расширением // Математическое моделирование // 2019. Т. 31, № 10. С. 117–129.
- 11. Широков И.А. Исследование особенностей дозвукового обтекания осесимметричной модели на основе регуляризованных уравнений // Сб. тезисов науч. конф. «Ломоносовские Чтения». Секция «Вычислительная математика и кибернетика». 15–25 апреля 2019 г. Москва, Издательский отдел факультета ВМК МГУ; МАКС Пресс, 2019. С. 115.
- 12. Широков И.А. Алгоритм построения сетки на основе tetgen для моделирования внешнего обтекания осесимметричной модели // Математическое моделирование. 2021. Т. 33, № 5. С. 91–106.
- 13. TetGen: A quality tetrahedral mesh generator. http://tetgen.berlios.de/ (дата обращения 09.07.2021).
- 14. Кудряшова Т.А., Поляков С.В., Свердлин А.А. Расчет параметров течения газа вокруг спускаемого аппарата // Математическое моделирование. 2008. Т. 20, № 7. С. 13–22.
- K-100 System, Keldysh Institute of Applied Mathematics RAS, Moscow. https://www.kiam.ru/MVS/resourses/k100.html (дата обращения 09.07.2021).

Статья поступила в редакцию 4 августа 2021 г., после доработки — 17 сентября 2021 г.,

принята к публикации 20 октября 2021 г.