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Abstract—The formulation of the problem, the numerical solution method, and description of the test
calculation case for modeling a melt f low in the problem of crystal growth by the Czochralski
(Chochralsky) method are presented. The mathematical model is based on regularized or quasi-
hydrodynamic (QHD) equations to describe a viscous, incompressible heat-conducting f luid. The
numerical algorithm is implemented on the OpenFOAM package within the mulesQHDFoam solver.
The proposed approach allows calculations of an unsteady three-dimensional f low in a crucible with
the given geometry for high Reynolds and Grashof numbers. As an example, the results for the f low in
a simplified configuration are given. An asymmetric transient f low is obtained.
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INTRODUCTION
The Czochralski (Chochralsky) method is one of the most common methods for growing crystals from

a melt: a crystal seed is placed on the free surface of the melt, which is pulled upward as the crystal grows.
In this case, the grown ingot obtains the same crystal structure as the original seed crystal. To grow crystals
by the Czochralski method, crucibles—containers that are resistant to the melt and the parameters of the
installation—are used. To ensure uniform distribution of temperature and impurities throughout the vol-
ume of the melt, the seed crystal with the single crystal growing on it and the crucible with the melt are
rotated in opposite directions. To increase the yield of the crystalline substance, the melt is continuously
heated. The classic crucible has a rounded shape, in which a heat-insulating layer is placed on top of the
melt.

The shape of the resulting crystal is close to cylindrical with the distortions determined by the thermal
conditions of growth, the pulling rate, the crystal structure, and the crystallographic orientation of the
grown sample. For the subsequent use of crystals in the production of microelectronic devices, the grown
crystal must be as homogeneous as possible. Considering the high cost of the starting materials and the
installation itself, the high temperatures at which the crystallization process occurs, the impossibility of
visualizing the f low or measuring the parameters of the melt, as well as the toxicity of the entire process as
a whole, there is obvious interest in the mathematical modeling of the melt f low using the Czochralski
method.

In the real industrial installations of the Czochralski method, the melt f low is a three-dimensional
unsteady motion that can be described in terms of the equations of a viscous incompressible f luid in a
gravity field in the Boussinesq approximation [1, 2]. The numerical description of this process is widely
covered in the literature, a detailed analysis of which is not possible in this study. Due to the complexity
of the process and the insufficient power of computational tools, the authors of the early works used fairly
stringent simplifying assumptions: the f low was assumed to be axisymmetric and steady; see, for example,
[3, 4], the bibliography for them, and the review [5]. Subsequently, gravitational convection was modeled
for parameters of installations close to reality, including for nonaxisymmetric unsteady regimes close to
turbulent regimes, for example, [6–9]. However, due to the complexity of the analysis of the results
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depending on the Grashof and Reynolds numbers, studies were also carried out in simplified formula-
tions, for example, modeling three-dimensional stationary and unsteady f lows in the gravity field without
taking into account the rotation [10]. Basically, problems were solved within individual research codes.

In general, to describe the melt f low in the Czochralski method, a numerical algorithm is required that
allows calculations at large Reynolds and Grashof numbers, is not focused on the symmetry or stationarity
of the f low, and describes crucible shape used in the installations. Due to the complexity of the calcula-
tion, to increase the efficiency of the algorithm, it is required to implement it on a multiprocessor com-
puter system.

This paper provides a concise description of a method that allows the numerical modeling of an
unsteady melt f low by the Czochralski method in a full three-dimensional setting, taking into account the
rotation and real parameters of the melt. The algorithm is based on regularized or quasi-hydrodynamic
(QHD) equations to describe the f low of a viscous incompressible f luid. The numerical implementation
was performed using the mulesQHDFoam solver included in the OpenFOAM open-source software
package. The latter allows the use of arbitrary unstructured spatial grids to describe the complex configu-
ration of the crucible and multiprocessor computing systems to speed up calculations.

This article has the following structure: the first section provides a brief description of the QHD equa-
tions for problems of gravitational convection in the Boussinesq approximation. The second section pres-
ents the formulation of a typical problem of the Czochralski method with the setting of the corresponding
parameters in the OpenFOAM open-source complex. The third section describes the implementation of
the calculation in the OpenFOAM package, for which the corresponding case (the computational tem-
plate) is freely available. The results of the test calculation, confirming the unsteady nature of the f low, are
given in the fourth section. In conclusion, the calculation results are analyzed and some conclusions are
drawn.

1. QHD SYSTEM OF EQUATIONS FOR DESCRIBING THE FLOW
OF A VISCOUS INCOMPRESSIBLE HEAT-CONDUCTING FLUID

AND A NUMERICAL ALGORITHM
The Navier–Stokes equations for describing the f low of a viscous incompressible heat-conducting

fluid include the incompressibility, momentum, and temperature equations. When modeling convection
flows in a gravity field, a simplified version of the system proposed in the works of A. Oberbeck (1879) and
J. Boussinesq (1903) for the Navier–Stokes equations is widely used. This approximation assumes that the
density depends only on temperature in the form , where  is the temperature
deviation from its value ,  is the constant density value, and β > 0 is the thermal expan-
sion coefficient. In this case, the change in density with temperature is taken into account only in the term
with the external force, which determines the thermal convection in the liquid. In addition to temperature,
the model can include the dependence of density on the impurity concentration.

The system of Navier–Stokes equations for thermal convection in the Boussinesq approximation has
the following form (see, for example, [1, 2]):

(1)

(2)

(3)

Here,  is the hydrodynamic velocity,  is the pressure measured from the hydrostatic
pressure,  is a tensor of the second rank obtained as a result of the direct product of two vectors,

 is the Navier–Stokes viscous stress tensor, μ is the dynamic viscosity coef-
ficient, and x is the thermal diffusivity coefficient. In the system of equations, it is convenient to use , the
kinematic viscosity coefficient, which is related to the dynamic viscosity coefficient  as . Values

 and  are usually constant.
Calculating the divergence from Eq. (2) and taking into account the validity Eq. (1), we obtain the

Poisson equation for pressure

(4)
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The method of obtaining the Poisson equation as a consequence of system (1) and (2) leads to the need
to include an additional stage in the numerical algorithm. The numerical solution is corrected so that for
the calculated velocities, Eq. (1), which is an expression of the law of conservation of mass in the problem
under consideration, must be satisfied with sufficient accuracy.

The boundary conditions for system (1)–(3) do not include the boundary condition for pressure,
which is necessary to solve the Poisson equation. The pressure boundary conditions required in the
numerical algorithm are written based on various assumptions. When writing difference equations on
spaced spatial grids, it is possible to eliminate the use of boundary conditions for pressure. However, these
mathematical problems complicate the procedure for the numerical solution of the original system of
equations, making it multistage.

There are a number of ways to numerically solve the system of equations (1)–(3) (for example, [2]). In
this study, for the numerical modeling of a hydrodynamic problem, the QHD method is used, based on
the regularization of the system of Navier–Stokes equations (1)–(3). The QHD system, or regularized,
system of equations was introduced by Yu.V. Sheretov in 1993. Let us present the form of the QHD system
of equations in the Oberbeck–Boussinesq approximation according to, for example, [11–14]:

(5)

(6)

(7)

The velocity correction vector  and viscous stress tensor S are calculated as

(8)

Here τ is the regularization parameter, which has the dimension of time. The QHD system is closely
related to the original system of equations (1)–(3) and, in particular, has the following properties: the reg-
ularized system has a number of exact solutions that coincide with the exact solutions of the original sys-
tem; for a stationary problem, any solution that is an exact solution of the original system also turns out to
be an exact solution of the regularized equations. In particular, the exact solution of the stationary prob-
lem of the f low between rotating infinite cylinders within the framework of the Navier–Stokes equations
is also the exact solution of this problem for the QHD equations [11, 12]. At  the regularized system
transforms into the original system of equations.

The QHD system is more complex than the original equations. However, the new system of equations
makes it possible to build simpler methods for the numerical solution of hydrodynamic problems, which
differ from the methods that are traditionally used for the numerical solution of the Navier–Stokes system
of equations written in velocity-pressure variables. In particular, this concerns the use of central differ-
ences to approximate spatial derivatives and calculate pressure, which is an essential part of the entire
computational procedure as a whole.

For the QHD system, the Poisson equation for pressure follows directly from the continuity equation.
Indeed, substituting expression (8) into the continuity equation (5) for w, we immediately obtain the equa-
tion for pressure at constant values  and τ:

(9)

We note that Eq. (9) differs from Eq. (4) by the presence of a term with the coefficient 1/τ on the right side.

The boundary conditions for pressure in this case are a direct consequence of the boundary conditions
for the velocity vector u and velocity correction vector w. For example, for a solid impenetrable wall, the
boundary condition can be set to zero of the velocity component normal to the boundary  and

. From these two conditions the boundary condition for pressure directly follows in the form

(10)
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To carry out calculations using the QHD system, it is necessary to select the regularization parameter τ.
It is convenient to relate its value with the characteristic hydrodynamic time of the problem, which we
denote by τ0. The characteristic time in problems of forced convection can be determined through the
coefficient of kinematic viscosity ν and characteristic velocity u0 in the dimensional form as

(11)
Parameter τ has the order of characteristic time τ0. If the values of τ are too high, the terms proportional
to this coefficient (regularizers) become dominant, which leads to the breakdown of the numerical solu-
tion. If τ is too small, then an unacceptably small time step is required for the stability of the numerical
solution. As the calculation experience shows, starting from a certain value, the decrease in parameter τ
ceases to affect the accuracy of the numerical solution. The choice of the regularization parameter deter-
mines the stability of the algorithm, as well as its accuracy and complexity; therefore, its optimal value
should be selected in the calculation.

As shown by the computational practice, the time integration step, which ensures the conditional sta-
bility of the difference algorithm, should not exceed the value of τ and is often chosen in the form

.
To numerically solve system (1)–(3), its regularized analog in form (5)–(7) was used. The spatial

approximation is constructed using the finite volume method with approximation for all spatial derivatives
using central differences. The difference algorithm uses an explicit difference scheme for all terms except
terms with molecular viscosity, for which the implicit iterative method is used ([15], p. 665). This method
is included as one of the basic elements in the OpenFOAM complex. The QHD algorithm does not
include limiters and other f low restrictors, and the stability of the algorithm is ensured by artificial τ-dis-
sipation, whose nonlinear structure adjusts its value depending on the gradients of the numerical solution.

The experience of using QHD equations for problems of modeling unsteady f lows of a viscous incom-
pressible f luid is quite extensive; see, for example, [11, 13, 14], where the results of calculations within the
framework of the research codes are presented. In [16–18] the results of the calculations obtained using
the QHD algorithm within the framework of the OpenFOAM open package are presented. In [16, 17] the
details of the implementation of the algorithm on spatial unstructured grids and its advantages compared
to other computational kernels included in this package are described.

Note that the heat conduction equation in the QHD system, currently implemented as solver on the
OpenFOAM open platform, includes an additional term on the right side compared to (7) and has the
form

(12)
This kind of regularization for the transfer equation was first proposed in [19] in the shallow water

approximation. To simulate the f low of a two-component gas mixture [20], the regularization type (12)
was successfully used to calculate the transfer of densities of individual components of the mixture.

2. PROBLEM STATEMENT
To demonstrate the operation of the algorithm, a simplified version of the crucible’s geometry is used,

the diagram of which is shown in Fig. 1. For the calculation, the crucible’s parameters were taken [8, 9]
as follows: height of the outer cylinder H = 0.1 m and the diameter of the cylinder D = 2R = 0.15 m. The
crucible rotates at constant angular velocity of  = 5 rpm = 0.52 rad/s and the crystal rotates in the oppo-
site direction with angular velocity  = −10 rpm = 1.04 rad/s. The crystal’s diameter is taken from real
technological dimensions and is 0.0508 m [9]. Problems similar in their geometry are presented in [7]. Let
us immediately note that when using the OpenFOAM package and a solver based on the QHD equations,
constructing a grid and calculating a variant with the required geometry is not difficult.

The computational domain in a simplified formulation is a cylinder in which the side surface con-
nected to the bottom rotates with angular velocity ω1. A gallium arsenide GaAs melt is placed in the cru-
cible. On the upper surface, the region of crystal growth is indicated by a dark color. The annular region
between the crucible and the crystal rotating in different directions is a free surface. At the initial moment
of time, the f low is stationary. The side and bottom surfaces of the crucible are impenetrable walls. The
system is in the gravity field g = 9.81 m/s2.

It is assumed that the GaAs melt in the crucible at the initial moment of time has a melting point tem-
perature equal to 1511 K and the pressure is equal to atmospheric pressure. The initial conditions of the
problem are presented in Table 1.

τ = ν 2
0 0/ .u

Δ = τ/2t

∂ ∂ + = + χΔ + τ ⋅ ∇/ div( ) div( ) div( ( )).T t T T T Tu w u u
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Fig. 1. Simplified diagram of the crucible used in the calculation.
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At the initial moment, the melt is motionless and, following the crucible and the crystal, is drawn into
a rotation due to viscosity.

The temperature of the crucible walls in the process unit is maintained in the mode required for oper-
ation through the influx of heat from outside; in a simplified setup, the walls and bottom are chosen to be
adiabatic. The free surface of the melt is also assumed to be adiabatic, since under experimental conditions
there is a layer of foam on the surface, which impedes the f low of heat into the atmosphere. The crystal
surface is maintained cooler than the melt, at a temperature of 1500 K.

For the velocity on the free surface, the condition of nonflow with sliding is set; and on the solid walls
of the crucible and crystal, the conditions of adhesion to the rotating surfaces of the crucible and crystal
are set.

For pressure at the solid boundaries of the computational domain, additional boundary conditions
(10) are set, which ensure the absence of the mass f low across these boundaries. On the lateral vertical
solid walls, these conditions degenerate the condition for the derivative of pressure normal to the lateral
wall. On the horizontal solid walls, the condition results in the form . Here
T0 = 1511 K. Atmospheric pressure is maintained on the free surface of the melt. A list of boundary con-
ditions for pressure, velocity, and temperature is given in Table 2.

3. FEATURES OF THE CALCULATION IMPLEMENTATION
IN THE OpenFOAM PACKAGE

A computational template with the problem under consideration and a description of its solution, cal-
culated by the mulesQHDFoam solver, is freely available on https://github.com/m-ist/Chochralsky_mu-
lesQHDFoam [21, 22].

When numerically modeling the f low of a viscous incompressible f luid with thermal convection using
the mulesQHDFoam solver, implemented in the OpenFOAM open-source software package, values in
dimensional form in the C system are used. The corresponding values for GaAs are given in Table 3. Note
that the molar mass value is not used in QHDFoam-based solvers, although formally this value should be
specified.

The boundary conditions for the hydrodynamic quantities are specified in the corresponding dictio-
naries of folder 0/. The boundary is divided into three regions: the crucible, the crystal, and the free sur-
face (Table 4).

∂ ∂ = −βρ −0 0/ ( )p z g T T
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Pressure p Velocity U Temperature T
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Table 2. Boundary conditions for the main hydrodynamic quantities

Crucible Crystal Free surface

Pressure p 106 Pa

Velocity U  rad/s  rad/s , 

Temperature T 1500 K

∂ = −βρ −
∂ 0 0( )p T Tg

n
∂ = −βρ −
∂ 0 0( )p T Tg

n
ω =1 0.52 ω = −2 1.04 = 0zu

∂ ∂ = ∂ ∂ =/ / 0x yz zu u

∂ ∂ =/ 0T n ∂ ∂ =/ 0T n

Table 3. GaAs melt parameters in dimensional form

Molar mass M 144.6446 g/mol
Dynamic viscosity 0.00279 kg/(m s)
Kinematic viscosity 0.49 × 10–6 m2/s
Thermal conductivity at melt temperature 0.178 W/(cm K)
Thermal expansion coefficient of melt β 1.87 × 10–4 K–1

Prandtl number Pr 0.068

Density 5720.0 kg/m3

Heat capacity at constant pressure Cp 434.0 J/(kg K)
ρ0

Table 4. Setting boundary conditions in the Chochralsky_mulesQHDFoam case

Crucible (outerCylinder) Crystal (disk) Free surface (outlet)

p qhdFlux qhdFlux 106 Pa

U outerCylinder Disk Slip
{type rotatingWallVelocity; {type rotatingWallVelocity;

origin (0 0 0); origin (0 0 0);
axis (0 0 1); axis (0 0 1);
omega 0.52;} omega –1.04;}

T 1500 K∂ ∂ =/ 0T n ∂ ∂ =/ 0T n
To carry out the test calculation, the simplest structured spatial grid was built and most of the grid cells
had the shape of a rectangular parallelepiped with sides close to each other in length.

Figure 2 shows the computational grids on the surface of the crucible and crystal on the left; and the
computational surface supplemented with a free surface on the right. The crystal in this implementation
has a height of three grid cells.

The computational mesh was built using the blockMesh and snappyHexMesh utilities. The cylindrical
crucible and crystal are specified in the geometry section with the corresponding radii. Using the topoSet
utility, the corresponding faces of the free surface, crucible, and crystal are determined. The total number
of computational grid cells is about 7000.

The calculation case with the problem under consideration, calculated by the mulesQHDFoam solver,
can be downloaded [22] and the calculation can be performed with other parameters of the problem. In
folder 0/, we can change the rotation velocity of the crucible and crystal, make the crucible isothermal,
set a constant heat f low on the walls, and set the desired external relative pressure. In the constant/ ther-
mophysicalProperties folder in the QHD section, we can vary the regularization parameter τ. In addition,
in this folder we can set parameters for another melt in the crucible by setting , Cp, , Pr, and . In the
system/snappyHexMesh folder, the parameters of the crucible and crystal cylinders are set, whose posi-
tion and radius can be changed. The spatial grid parameters can be changed in the refinementSurfaces
section. In the system/controlDict folder, a function is defined that records the velocity, pressure, and
temperature fields at the control points.

ρ0 μ β
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Fig. 2. Types of the computational grid on the boundaries of the computational domain.

Fig. 3. Example of time dependence for temperature (left) and velocity components ux (on right).
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The pressure equation is solved using the standard conjugate gradient method with the PCG precon-
ditioner.

We estimate the value of the regularization parameter in accordance with the data in Table 3. As the
characteristic velocity, we choose the rotation velocity of the crucible to be  =  m/s.
Then the estimate for the regularization parameter τ takes the form  =  s.

4. CALCULATION RESULT
In the calculations below, parameter τ was chosen to be greater than its estimated value and equal to

0.001 s. The calculation was carried out with a step  =  s until t = 1200 s, which corresponds to
100 revolutions of the crucible.

An analysis of the obtained results shows that the temperature, velocity, and pressure in the melt
demonstrate unsteady behavior. An example of the time dependence for the temperature and velocity
components  at a point located near the lower surface of the growing crystal in the time interval from 0
to 600 s is shown in Fig. 3. It follows from the figure that starting from approximately 50–60 s, that corre-
sponds to 5 revolutions of the crucible, the f low pattern becomes stably unsteady.

As an example of the f low structure, Fig. 4 shows the instantaneous trajectories of the particles in the
crucible at successive moments of time with an interval of 1 s.

From the given figures, it is clear that at certain moments of time, a picture formed in the f low field
resembles to toroidal vortex and demonstrates the downward descent of the cooled liquid under the crys-
tal. It is this f low that is assumed as the stationary velocity distribution in the Czochralski problem in a
number of works when modeling the problem in a stationary axisymmetric approximation; see, for exam-
ple, [8, 9], as well as the estimates in [7] and bibliographies in these works. However, forced convection at
high Reynolds numbers makes such a f low unstable and turns it into a chaotic one.

In order to estimate the f low field in the entire volume and the magnitude of the velocities, Fig. 5 shows
the distributions of the velocity modulus for five sections along axis z for two points in time corresponding
to 10 and 50 rotations of the crucible. The maximum velocity module does not exceed 0.44 m/s. From the

= ω0 1u R −× 23.9 10
τ = ν 2

0 0/u −× 43.3 10

Δt −× 45 10

xu
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Fig. 4. Spatial picture of instantaneous particle trajectories at moments of time t = 588, 589, 590, and 591 s.

Fig. 5. Velocity modulus for 5 sections corresponding z = 0.001, 0.025, 0.05, 0.075, and 0.095 at times t = 120, 600 s, which
is 10 and 50 turns of the crucible.
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figures it follows that the f low is asymmetrical and unsteady both after 10 revolutions of the crucible and
after 50 revolutions.

The uniformity of the grown crystal is largely determined by the distribution of velocities and tempera-
tures in the immediate vicinity of its lower surface. To form a high-quality crystal, it is desirable to have as
uniform a background of the temperature and velocities near its growing surface, which ensures the for-
mation of a f lat crystallization front.

Figure 6 shows the instantaneous particle trajectories and temperature distributions in the cross section
z = 0.076, located in the azimuthal plane directly below the bottom surface of the crystal at the same times
as in Fig. 5. A chaotic distribution of the spiral vortices with low flow velocities is observed.

The temperature distributions under the crystal at z = 0.076 at times of 120 and 600 s are shown in
Fig. 7. The surface of the crystal is located in the plane z = 0.08. The figure shows that the temperature
distribution is nonstationary and changes by about two degrees from the edge of the crystal to its center.
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 15  Suppl. 1  2023
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Fig. 6. Particle trajectories in the azimuthal plane at successive moments of time with an interval of 1 s.

Fig. 7. Temperature distributions at moments of time t = 120 (top) and 600 s (bottom). On the left, in a section under the
crystal (z = 0.076); on the right, along the x axis.
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The field of the velocity modulus in the z, x plane for the instantaneous and time-averaged f low pat-
terns is shown in Fig. 8. Averaging was performed from 600 to 1200 s in steps of Δt = 1 s. The resulting f low
field shows that the instantaneous distribution is chaotic, and the averaged f low as a whole has a structured
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 15  Suppl. 1  2023
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Fig. 8. Velocity module for instantaneous (top) and averaged (bottom) flow. Averaging time 600 s.
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form, where some asymmetry can be related to the asymmetry of the spatial grid. In the structure of the
averaged f low, a cylindrical vortex can be traced, whose axis coincides with the axis of rotation of the cru-
cible and crystal, and its bases are located under the crystal and at the bottom of the crucible. The veloc-
ities in the vortex zone are lower than near the crucible walls.

5. CONCLUSIONS

This study provides for the first time a description of a numerical experiment on modeling a three-
dimensional unsteady melt f low using the QHD algorithm. The calculation’s parameters correspond to
the settings actually used. In contrast to the assumptions used for this problem by many authors, it was
found that the f low in the melt was asymmetrical and unsteady. The resulting type of f low is determined
by the Reynolds and Grashof numbers inherent in the process. The Reynolds number, calculated from the
rotation velocity of the crucible, corresponds to the developed turbulent f low regime  ~

. The estimate for the Grashof number gives the value  ~ . This Grashof
number corresponds to the regime of the developed thermal convection, i.e., the variant when the heat
transfer due to gravitational convection prevails over the heat transfer due to thermal conductivity. The rel-
ative role of gravitational convection compared to forced convection in the heat transfer is determined by
the parameter . At , thermal convection is predominant; in the opposite case, forced
convection, caused by the rotation of the crucible and crystal, is predominant. In this example γ ~ 1. How-
ever, in the presented simulation example, all thermal processes are included. The Rayleigh number,
which is often used in the analysis of f low properties, is Ra = Pr · Gr ~ 2.3 × 106.

In the numerical experiments [7], a series of melt f lows was simulated in formulations close to those
described in this paper. A spatial grid in the (r, z, ) geometry with the approximation of spatial derivatives
not lower than the second approximation, was used. For the modes at Gr > 2 × 106 and Re > 2000,
unsteady periodic f lows of various types with deviation from axial symmetry are observed. This fact is
qualitatively consistent with the results presented above.

The experience of twenty years of using the QHD algorithm and its testing shows that the method
monotonically converges when the spatial grid is refined, the method is conditionally stable with an ade-
quate choice of the regularization parameter, and when the regularization parameter is decreased, its
accuracy does not change but requires the time step to be reduced. These studies were previously carried
out for test cases and are not presented here.

= ν0Re ( )/u R
× 36 10 = β Δ ν3 2Gr ( )/g TR × 73.4 10

γ = 2Gr/Re γ > 1

θ
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The detailed description of the calculation presented in this study in the OpenFOAM open software
package will allow interested users to prepare a software version and carry out their own calculations of
problems of this type, using the example described in this study as the basic example. Note that on the
given grid, the calculation time for 100 rotations of the crucible is about 10 h on 12 cores of the K100 mul-
tiprocessor complex installed at the Keldysh Institute of Applied Mathematics, Russian Academy of
Sciences.
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