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Abstract

 

—Results of numerical simulation are presented for buoyancy-driven and thermocapillary con-
vection in rectangular cavities at low Prandtl numbers. The results, which were obtained by solving a
quasi-hydrodynamic system of equations, are compared with the numerical results based on the Navier–
Stokes equations.

 

INTRODUCTION

The Navier–Stokes equations are widely used to describe viscous incompressible flows. However, the
construction of numerical algorithms for these equations is impeded by a number of difficulties, which
mainly arise in simulations of high-speed flows. This occurs because very fine grids are necessary to resolve
boundary-layer flows, specific approximations must be constructed, and regularizers are required to ensure
numerical stability. Moreover, special boundary conditions must be used for pressure when the numerical
algorithm is constructed for solving a set of equations written in the velocity–pressure formulation, or for
vorticity when the algorithm is based on equations written in the streamfunction–vorticity formulation. In
this paper, we consider an alternative approach to the numerical simulation of viscous incompressible flows,
based on quasi-hydrodynamic (QHD) equations, which can be very helpful in dealing with these problems.

Systems of equations of this class were proposed for describing gas flows in [1, 2] and were called the
quasi-gas-dynamic equations. These equations and the corresponding kinetically consistent difference
schemes were originally derived by averaging a Boltzmann-type model equation and by analyzing the
numerical algorithms designed to solve kinetic equations. In both analyses, the behavior of gas particles was
treated as a cyclic process of collisionless motion followed by instant relaxation of particles to a locally
Maxwellian equilibrium. The numerical algorithms based on this approach proved to be very efficient in
computations of complex problems in both time-independent and transient supersonic gas dynamics. They
were used in numerical analyses of pulsating flows, which play an important role in the studies of acoustic
loads in real systems (see [3]).

In [4], a phenomenological derivation of a new QHD system of equations was presented. These equa-
tions differ from the classical Navier–Stokes equations by additional divergence terms. The derivation
strongly relied on the assumption that the mean momentum density, 

 

ρ

 

u

 

, is not equal to the mass flux, 

 

j

 

, in
the general case. It is obvious that whether or not the vectors 

 

j

 

 and 

 

ρ

 

u

 

 are equal depends on the averaging
procedure applied to the density 

 

ρ

 

, fluid velocity 

 

u

 

,

 

 and temperature 

 

T

 

.
In the Navier–Stokes theory, the equations of fluid dynamics are constructed by smoothing over the

physical space  at a certain moment 

 

t

 

. At each point (

 

x

 

, 

 

t

 

), a set 

 

M

 

 of physically infinitesimal volumes 

 

V

 

is considered in . The mean values of 

 

ρ

 

, 

 

u

 

, and 

 

T

 

 are assumed to be constant on 

 

M

 

; therefore, these values
can be treated as physical quantities. In changing from one inertial coordinate system to another, the spatial
averages of 

 

ρ

 

, 

 

u

 

, and 

 

T

 

 are transformed according to a certain law, whereas the Navier–Stokes equations,
which describe their evolution, remain invariant under the Galilean group [5].

In contrast to the Navier–Stokes equations, the QHD equations describe the evolution of spatiotemporal
averages of 

 

ρ

 

, 

 

u

 

, and 

 

T

 

. At each point (

 

x

 

, 

 

t

 

), a set 

 

M

 

1

 

 of physically infinitesimal volumes 

 

V

 

1

 

 is considered in
the phase space 

 

R

 

3

 

 

 

×

 

 

 

R

 

t

 

. If the values of the averages are constant for every 

 

V

 

1

 

 from 

 

M

 

1

 

, they can be treated
as physical quantities. Note that the spatiotemporal averages may change as a result of a transformation
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3
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from one inertial coordinate system to another. A detailed description of the procedure of construction of
spatiotemporal averages can be found in [6]. The equation of local mass conservation must have the form

However, it is impossible to rigorously prove that 

 

j

 

 = 

 

ρ

 

u

 

. The average momentum of a unit volume may
change during a physically infinitesimal interval.

In [4, 6, 7], a set of exact solutions to the QHD equations was constructed, a procedure of changing to
the mass Lagrangian coordinates was substantiated, the QHD equations were analyzed in the Boussinesq
approximation, the properties of solutions of the type describing a stationary shock wave and the laminar
boundary-layer approximation were examined, and some properties to the QHD system of equations were
obtained.

Some topics concerning numerical simulation based on the QHD equations were considered in [8, 9], in
particular, the well-known test problems of the isothermal incompressible flow in a square cavity with a
moving top boundary, Poiseuille flow in a planar channel, buoyancy-driven convection in a laterally heated
square cavity.

In this paper, we use a numerical algorithm based on the QHD equations to compute low-Prandtl buoy-
ancy-driven and thermocapillary convective flows in rectangular cavities. In addition to the primary (steady)
flow regimes, we computed secondary (unsteady) regimes. The numerical results are in good agreement
with those obtained by other authors who used the Navier–Stokes model.

In the numerical analysis of the QHD equations, the problem of boundary conditions for Poisson’s equa-
tion is eliminated, and a simple approximation of spatial derivatives is employed. The regularizers required
to ensure numerical stability at high Grashof and Marangoni numbers are provided by the additional diver-
gence terms with a small parameter, which appear in the equations as a result of additional smoothing over
time.

1. THE SYSTEM OF QUASI-HYDRODYNAMIC EQUATIONS 
IN THE BOUSSINESQ APPROXIMATION

The system indicated in the section heading was derived in [4]. It can be written as

 

(1‡)

(1b)

(1c)

 

Here, 

 

ρ

 

 = 

 

const

 

 > 0

 

 is the average density, 

 

u

 

 = 

 

u

 

(

 

x

 

, 

 

t

 

)

 

 is the fluid velocity, 

 

p

 

 = 

 

p

 

(

 

x

 

, 

 

t

 

)

 

 is the dynamic pressure,
and 

 

T

 

 = 

 

T

 

(

 

x

 

, 

 

t

 

)

 

 is the temperature deviation from the average temperature 

 

T

 

0

 

. The quantities 

 

j

 

 and 

 

Π

 

 are inter-
preted as the mass flux and viscous stress tensor, respectively, and calculated as

 

(2)

(3)

 

where 

 

Π

 

NS

 

 = 

 

η

 

[(

 

—

 

 

 

⊗

 

 

 

u

 

) + (

 

—

 

 

 

⊗

 

 

 

u

 

)

 

Ú

 

]

 

 is the Navier–Stokes viscous stress tensor,

 

(4)

 

In equations (1), as well as in expressions (2)–(4), the absolute viscosity 

 

η

 

, thermal diffusivity 

 

χ

 

, thermal
expansion coefficient 

 

β

 

, and characteristic time 

 

τ

 

 are assumed to be positive and constant; and 

 

g

 

 is the grav-
itational acceleration.

The parameter 

 

τ

 

 can be calculated (see [4]) as 

 

τ

 

 = 

 

η

 

/(

 

ρ

 

)

 

, where 

 

c

 

s

 

 is the sonic velocity in the fluid at
the temperature 

 

T

 

0

 

. The quantity 

 

ρ

 

u

 

 is interpreted as the spatiotemporally average momentum per unit fluid
volume.

In writing equations (1), we used the conventional tensor notation. In calculating the divergence of the
nonsymmetric tensor 

 

Π

 

, convolution is performed with respect to its first index.
The QHD system (1) can be rewritten in the equivalent conservative form

 

(5‡)

∂ρ ∂t⁄ div j+ 0.=

div u w–( ) 0,=

∂u
∂t
------ u w–( )—u

1
ρ
---— p+ +

1
ρ
---div Π βgT ,–=

∂T
∂t
------ u w–( )—T+ χ∆T .=

j ρ u w–( ),=

Π Π NS ρ u w⊗( ),+=

w τ u —⋅( )u
1
ρ
---— p βgT+ + .=

cs
2

div u div w,=
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(5b)

(5c)
As τ  0, it reduces to the classical Navier–Stokes equations written in the Boussinesq approximation.

In the studies of flows in closed vessels, the QHD system (5) is solved with the conventional boundary
conditions for the Navier–Stokes equations, supplemented with the impermeability condition

(6)

where n = n(x, t) is the outward unit normal to the surface Γ.
Let us write out equations (5) for planar unsteady flows in dimensionless form:

(7)

(8)

(9)

(10)

Here, Re, Pr, and Gr are the Reynolds, Prandtl, and Grashof numbers, respectively; and τ0 is the character-
istic time also written in dimensionless form. The procedure of nondimensionalization of equations (7)–(10)
and boundary conditions are determined by the specific problem and written out below.

2. NUMERICAL ALGORITHM

The set of equations written above was solved by a finite-difference method. The spatial derivatives in
(7)–(10) were approximated on a nonuniform grid by central differences as follows:

where xi + 1 = xi + hi + 1, i = , yj + 1 = yj + hj + 1, j = , and κi ± 1/2 = (κi + κi ± 1)/2. All quantities
were calculated at grid points. The values at half-integer grid points were calculated as the half-sums of their
values at the adjacent integer grid points. Mixed derivatives were approximated in terms of their values at
cell centers, which were calculated as 1/4 times the sums of their values at the adjacent grid points. Time
derivatives were approximated by first-order upwind differences. The boundary of the computational

∂u
∂t
------ div u u⊗( ) 1

ρ
---— p+ +

1
ρ
---div ΠNS div w u⊗( ) u w⊗( )+[ ] β gT ,–+=

∂T ∂t⁄ div uT( )+ div wT( ) χ∆T .+=

j n⋅( ) Γ 0,=

∂u
∂x
------ ∂v

∂y
-------+ τ0

∂
∂x
------ u

∂u
∂x
------ v

∂u
∂y
------ ∂p

∂x
------+ + 

  τ0
∂
∂y
----- u

∂v
∂x
------- v

∂v
∂y
------- ∂p

∂y
------ Gr T–+ + 

  ,+=

∂u
∂t
------

∂
∂x
------ u2( ) ∂

∂y
----- uv( ) ∂p

∂x
------+ + +

2
Re
------ ∂

∂x
------ ∂u

∂x
------ 

  1
Re
------ ∂

∂y
----- ∂u

∂y
------ 

  1
Re
------ ∂

∂y
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∂x
------- 

 + +=

+ 2τ0
∂
∂x
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∂u
∂x
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∂u
∂y
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------+ + 

  τ0
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∂u
∂x
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∂u
∂y
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∂x
------+ + 

  τ0
∂
∂y
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∂v
∂x
------- v

∂v
∂y
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∂y
------ Gr T–+ + 

  ,+ +

∂v
∂t
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∂
∂y
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∂y
------+ + +

2
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  1
Re
------ ∂

∂x
------ ∂v
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  1
Re
------ ∂
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+ 2τ0
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∂
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domain was located at half-integer grid points. The boundary conditions for velocity and temperature were
approximated by calculating the corresponding derivatives with second-order accuracy and introducing
additional layers of nonphysical grid points along the external boundaries of the computational domain.

At each time step, the pressure field was calculated by using velocity and temperature fields as a solution
to Poisson’s equation

(11)

which was derived from (7) and approximated by analogy with the equations of motion. The boundary con-
ditions for pressure were derived from impermeability condition (6) and approximated with second-order
accuracy by extrapolating Poisson’s equation to the boundary. Equation (11) was solved by the precondi-
tioned generalized conjugate gradient method from [10]. The preconditioner was constructed by means of
a pointwise incomplete factorization of the matrix of the linear system Ax = B. The pressure at the top right
point was held constant and equal to unity at all times. The convergence rate of the iterations performed in
solving equation (11) determines the efficiency of the algorithm as a whole. The condition for terminating
the iteration was set as follows:

where –fij is the right-hand side of the difference counterpart of equation (11). At the next step, the velocity
and temperature fields were calculated by the explicit scheme based on the difference counterparts of equa-
tions (8)–(10). A flow was considered as steady if

where n is the number of a time step.
The numerical results are represented by isolines of the streamfunction, isotherms, isolines of velocity

and pressure, and graphs of velocity evolution at several points of the computational domain. The stream-
function Ψ was calculated for the vector field u – w satisfying the condition div(u – w) = 0:

where w = (w1, w2)Ú. When τ0 is small, the vectors u and u – w are close.

3. THERMAL CONVECTION
We considered the buoyancy-driven thermal convective flow of an incompressible fluid in a rectangular

cavity of height H and length L at low Prandtl numbers Pr. This a well-known problem, which was suggested
as a test for analyzing the numerical techniques designed to compute convective flows in melts. The practi-
cal utility of these computations is related to the fact that periodic temperature oscillations in metallic melts
(characterized by low Prandtl numbers) poses serious problems for semiconductor crystal growth (see [11]).

The flow is described by equations (7)–(10), which can be nondimensionalized by the relations

where A = L/H, ∆T = T1 – T2 is the temperature difference between the left and right walls, and ν = η /ρ is
the kinematic viscosity. With this nondimensionalization, we have Gr = βg∆TH4/(Lν2), Re = 1, Pr = ν /χ,
and τ0 = å2, where å = ν /(Hcs) is the Mach number. The cavity has a rigid bottom, and its top boundary
may be either rigid (the R–R case) or free (the R–F case).

Equations (8)–(11) are supplemented with the following boundary conditions:
bottom wall: u = 0, v = 0, ∂p/∂y = GrT, T(x) = A – x;
top boundary: u = 0, v  = 0, ∂p/∂y = GrT, T(x) = A – x in the R–R case;

 = 0, v  = 0, ∂p/∂y = GrT, T(x) = A – x in the R–F case;

left wall: u = 0, v  = 0, ∂p/∂x = 0, T = A;

∂2 p
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--------+
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ν
H
----, t t̃

H2

ν
------, p p̃ρ ν

H
---- 

 
2

, T T̃
∆T
A

-------,= = = = = = =

∂u
∂y
------



1666

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 38     No. 10      1998

ELIZAROVA et al.

right wall: u = 0, v  = 0, ∂p/∂x = 0, T = 0.
The dimensionless parameter τ0 can be related to the Grashof number by the relation

where α is very small. For example, for the thermal convective air flow at ∆T = 100°C in a square cavity of
H = 1 m, α ~ 3 × 10–5. In simulations, the value of α should be taken from the interval 0 < α ≤ 1. In most
computations, α was set equal to unity. Numerical experiments showed that a decrease in α resulted in a
minor improvement of numerical accuracy, but the numerical algorithm became less stable, which required
a reduction of the time step ∆t. Thus, the terms containing τ0 can be interpreted as regularizers in the context
of the present analysis.

The problem of thermal convection in a rectangular cavity (A = 4) heated from the left was solved for
moderate Grashof numbers at the low Prandtl number Pr = 0.015 on a uniform 22 × 82 grid with the mesh
size h = 1/20. In all cases, the time step was set equal to 10–6.

In the R–R case at Gr = 4 × 104, the velocity and temperature fields computed at Gr = 3 × 104 were used
as the initial conditions. In other computations, we used the unperturbed velocity and temperature fields as
initial conditions.

In [11], four groups of methods for solving this problem were considered: finite-difference methods,
finite-volume methods, finite element methods, and spectral methods. However, since the authors used a
finite-difference approximation, the computed results were compared only with the numerical results
obtained by finite-difference methods that were reviewed in [12].

In [13], the Navier–Stokes equations were written in the “streamfunction–vorticity formulation.” The
numerical procedure was based on the relaxation method. The idea of the method is that a time dependent
term is added to the equation for streamfunction, which makes it a parabolic equation, and transient regu-
larizers are added to the remaining equations. The difference equations were solved by the implicit scheme
of the method of alternating directions (the ADI scheme). Time derivatives were approximated by upwind
differences; spatial derivatives, by second-order accurate central differences. Most computations were per-
formed on a uniform 81 × 321 grid.

In [14], the difference approximation of the Navier–Stokes equations written in the streamfunction–vor-
ticity formulation was based on the Hermitian method for approximation of spatial derivatives, in which the
first and second derivatives are treated as unknowns. The numerical solution was performed with the ADI
scheme. The desired values of vorticity on the wall were calculated by means of the fourth-order accurate
Hermitian relation. Several nonuniform grids that condensed toward the walls and in the regions of steep
gradients were tested. Most solutions were obtained on a 41 × 121 grid.

In [15], the solution was obtained by the popular semi-implicit time-splitting method. In the semiexplicit
approach, the explicit Adams–Bashforth method is applied to the nonlinear convective terms, and the
implicit Crank–Nicolson method is applied to the viscous terms. In the spatial approximation, second-order
accurate central differences were employed. All computations were performed on a uniform 25 × 97 grid.

In [16], the well-known AQUA (Advanced simulation using Quadratic Upstream differencing Algo-
rithm) package was employed, based on second-order accurate upwind differences. The finite-difference
equations were derived by the method of control volume. The resulting difference scheme was second order
accurate in both time and space. Upwind differences were used to approximate the convective terms. The
diffusive terms were approximated by second order accurate central differences. A uniform 21 × 81 grid was
employed.

Comparing the results, one should keep in mind that, in contrast to the present analysis, the right wall of
the cavity was heated in all studies cited here.

3.1. Numerical results for the R–R convection. The computations were performed for moderate
Grashof numbers: Gr = 2 × 104, 3 × 104, and 4 × 104.

τ0
1

Gr
------βg∆T H2

Lcs
2

--------------------- α Gr,⁄= =

For Gr = 2 × 104, we obtained a steady flow re-
gime (see Fig. 1). The streamlines correspond to an
elongated vortex. The results obtained are in good
qualitative and quantitative agreement with those
reported in [12, 13], where the flow was computed
on very fine grids (on a 81 × 321 grid in [13]). Be-

Table

Sourse V* U* ψ*

This work 0.448 0.672 0.409

[12] 0.452–0.482 0.669–0.704 0.406–0.409
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low, we compare the values of streamfunction and velocity components with those presented in [12], and
the results turn out to be very close. Since a different nondimensionalization was used for velocity in [12],
u = νGr0.5/H, v  = νGr0.5/H, Table 1 compares the following quantities with the results from [12]:

At Gr = 3 × 104, we obtained a steady flow regime (see Fig. 2), which is approached through oscillatory
relaxation. Figure 2a compares the histories of the horizontal velocity at the center of the domain obtained
for α = 1 (solid curve) and α = 0.1 (dashed curve). The curves are almost identical, which means that the
solution weakly depends on the regularization parameter in the chosen interval of its values. In the majority
of studies, oscillatory regimes were obtained in this case, but it was shown in [14, 15] that there exists a
steady flow regime. The steady flow involves a main vortex located near the center and two additional vor-
tices in the right and left parts of the cavity. In [15], a steady solution was obtained in this case, and its com-
parison with the results of the present study shows a good agreement. In particular, we compared the vertical
profiles of horizontal velocity at x = 3A/4, the distributions of vertical velocity at y = 1/2, and streamline
patterns.

At Gr = 4 × 104, we obtained an oscillatory flow regime (see Fig. 3) with an oscillation period estimated
as Tvib = 0.047 (Fig. 3a), which corresponds to the frequency f1 = 1/Tvib = 21.28. This result is very close to
those reported in [12], where the results obtained by various authors were summarized. The oscillation fre-
quency estimated by those authors varies from 21.186 to 22.35 in this case. In this problem, the flow has a
structure similar to that obtained in the preceding case, and the oscillation involves variation of the vortex
intensities, which is consistent with the results reported in [15].

3.2. Numerical results for the R–F convection. In contrast to the preceding case, a slip condition for
the tangential velocity was set on the top boundary, which stimulates the oscillations.

At Gr = 104, we obtained a steady flow regime (see Fig. 4), in which an asymmetric two-cell structure
develops. The larger cell was located closer to the cool wall; the smaller one, between the cavity center and
the hot left wall. The figures presented here are consistent with their counterparts presented in [16].

ũ ṽ

ψ∗
xy

max ψ Gr0.5⁄ , U∗ max u y( ) Gr
y

0.5 for x⁄ 3A 4, V∗⁄ max v x( ) Gr
x

0.5 for y⁄ 1 2.⁄= = = = =

0

–5

–10

–15

–20

–25

–30

0 0.1 0.2 0.3 0.4 0.5 t

u

R–R, Gr = 3 × 104

(a)

(b)

(a)

(b)

R–R, Gr = 4 × 104
u

t
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–35

–36

1.51.3 1.4

Fig. 2. Fig. 3.

Fig. 1.
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At Gr = 2 × 104, we obtained an oscillatory flow regime (see Fig. 5) with a period that can be estimated
as Tvib = 0.0646 (Fig. 5a), which corresponds to the frequency f1 = 15.48. According to the review in [12],
the oscillation frequency estimated by various authors varies from 15.580 to 17.2. In this problem, the flow
is a vortex located closer to the right (cool) wall of the cavity. In the left part of the cavity, a weaker vortex
develops (Fig. 5b). The oscillation involves variation of their intensities. In this case, we clearly see the evo-
lution of the secondary vortices, whose pattern is consistent with the patterns shown in the corresponding
figures in [16].

To elucidate the effect of the parameter α, this flow was computed for α = 1 (solid curve) and α = 0.1
(dashed curve); to check the accuracy, we computed the flow with α = 1 on the refined 42 × 162 grid (dotted
curve). The corresponding velocity histories are shown in Fig. 5a. It is obvious that a decrease in α does not
affect the oscillation period and amplitude since the corresponding curves are practically identical. Conden-
sation of the grid did not affect the oscillation frequency, but somewhat changed the oscillation amplitude.

4. MARANGONI CONVECTION
We now consider the problem of thermocapillary convection for a viscous incompressible fluid in the

absence of gravity (g = 0) (see [17, 18]). This problem was analyzed in numerous studies, because the liquid
(melt) surface is free in various processes used in space technologies (e.g., directional crystallization or cru-
cibleless zone melting), and it is the thermocapillary effect that gives rise to the convective flow in the melt.

The convective flow is due solely to surface tension, which is reflected by the following balance condi-
tion for the surface-tension and viscous-friction forces on the free top boundary: Πyx = (∂σ/∂T)∂T/∂x,
where σ = σ(T) is the surface tension of the liquid.

In the two-dimensional case, according to (2)–(4), we have

Π η
2

∂u
∂x
------ ∂u

∂y
------ ∂v

∂x
-------+

∂u
∂y
------ ∂v

∂x
-------+ 2

∂v
∂y
-------

τ
u ρ u

∂u
∂x
------ v

∂u
∂y
------+ 

  ∂p
∂x
------+ 

  u ρ u
∂v
∂x
------- v

∂v
∂y
-------+ 

  ∂p
∂y
------+ 

 

v ρ u
∂u
∂x
------ v

∂u
∂y
------+ 

  ∂p
∂x
------+ 

  v ρ u
∂v
∂x
------- v

∂v
∂y
-------+ 

  ∂p
∂y
------+ 

 
.+=

Fig. 4.

(a)

(b)
t

u

R–F, Gr = 2 × 104
0

–20

–40

–60

–80

–100

–120

0 0.1 0.2 0.3

(a)

(b)

(c)

Fig. 6.Fig. 5.



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 38     No. 10      1998

APPLICATION OF QUASI-HYDRODYNAMIC EQUATIONS IN THE MODELING 1669

Since ∂p /∂y and v  = 0 on the top boundary, we have ∂v /∂x = 0, and the tensor Π is simplified:

Finally, we obtain the following dimensional condition on the top boundary: η∂u/∂y = (∂σ/∂T)∂T/∂x,
which agrees with the conventional boundary condition in the thermocapillary convection problem for the
Navier–Stokes equations. Note that ∂σ/∂T < 0 for most liquids.

We considered the flow in a rectangular cavity of height H and length L. The flow was described by the
set of equations (5) in which the extraneous force is eliminated. In the two-dimensional case, the equations
are written as (7)–(10). We changed to dimensionless variables by means of the following formulas:

With this nondimensionalization, we have the Marangoni number 

Re = 1; Pr = ν /χ; τ0 = å2; and the Mach number å = ν /(Hcs), which is small in problems considered here.
Equations (8)–(11) is closed by setting the following boundary conditions:
bottom wall: u = 0, v  = 0, ∂p/∂y = 0, and ∂T/∂y = 0;

top boundary:  = – , v  = 0, ∂p/∂y = 0, and ∂T/∂y = 0;

left wall: u = 0, v  = 0, ∂p/∂x = 0, and T = 1;
right wall: u = 0, v  = 0, ∂p/∂x = 0, and T = 0.
As in the thermal convection problem, the dimensionless parameter τ0 can be related to the dimensional

parameters of the problem as follows:

The value of α is very small. For example, for silicon at ∆T = 1000°C in a cavity of height H = 1 cm, we
have α ~ 10–9. In computations, the value of this parameter should be taken from the interval 0 < α ≤ 1. In
computing the present problem, we set α equal to unity; accordingly, the terms containing τ0 may be inter-
preted as regularizers.

The Marangoni convection problem in a rectangular cavity (A = 4) heated from the left was solved for
Ma = 5, 10, 20, 100, and 400 and Pr = 0.015 on a uniform 27 × 102 grid. The time step was 5 × 10–6. We
used the unperturbed velocity and temperature fields as initial conditions.

The results computed for Ma = 400 and Ma ≤ 100 were compared with those reported in [17] and [18],
respectively.

In [17], a new numerical technique based on the SOLA algorithm was developed, in which a finite-vol-
ume method was used on an orthogonal grid. Integration with respect to time was performed with the sec-
ond-order accurate leap-frog explicit Euler scheme. Computations were performed on 25 × 100, 32 × 128,
40 × 160, and 50 × 200 grids.

In [18], a high-order accurate difference method was employed, in which spatial derivatives were
approximated by second-order accurate central differences, a Hermitian scheme was used for streamfunc-
tion, the boundary conditions for vorticity were approximated with second-order accuracy, and the vorticity
transport equation was solved by the method of alternating directions. The computations were performed
on a nonuniform 35 × 95 grid.

Figure 6 shows the streamline patterns obtained for Ma = 5, 100, and 400. Since the Marangoni numbers
are positive, the fluid motion along the top boundary is directed toward the cool wall. A vortex flow devel-
ops, whose center is closer to the right wall. With increasing Ma, the fluid velocity increases, and isotherms
are distorted. At Ma = 100, additional vortices appear, whose sense of rotation is the same as that of the main
vortex. The graphs presented in [18] for the same values of the Marangoni number are in good agreement
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with these results. At Ma = 400, a vortex rotating counter to the main vortex forms in the lower left corner
of the cavity. A similar pattern was obtained in [17]. The profiles of horizontal velocity computed at x = A/2
for various Marangoni numbers were compared with the corresponding profiles from [18]. For correct com-
parison, the velocity was calculated as U*(y) = u(y)Pr/Ma, which corresponds to the nondimensionalization
used in [18]. The graphs obtained are virtually identical with their counterparts presented in that paper.

Thus, the results obtained for Ma ≤ 100 and Ma = 400 are in good agreement with those reported in [18]
and [17], respectively.

CONCLUSIONS

Unlike the Navier–Stokes equations, the QHD equations can be used to perform computations with sim-
ple explicit difference schemes on relatively coarse grids in a wide range of parameters. In all equations,
spatial derivatives with respect to all coordinates are approximated by central differences characterized by
second-order accuracy on uniform grids. Boundary conditions for the pressure described by Poisson’s equa-
tion are obtained by setting the mass flux across the boundary of the computational domain equal to zero.
The regularizers required to ensure stable computation at high Grashof and Marangoni numbers are pro-
vided by additional divergence terms containing a small parameter, which arise in the equations as a result
of additional smoothing over time. The parameter τ0 is a natural regularization parameter to be chosen as
dictated by the specific problem.

The results computed for problems of low-Prandtl viscous incompressible flow on the basis of the QHD
system are in complete agreement with those obtained by solving the Navier–Stokes equations. In addition
to steady flow regimes, secondary (transient) regimes can be computed. It has been shown that the oscilla-
tion period is independent of the mesh size and regularization parameter.

Therefore, the QHD system of equations can be effectively used to simulate complex unsteady convec-
tive motion.
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