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Abstract

This work is devoted to the derivation of moment equations for the descrip-
tion of a gasdynamic flow of a binary non-reacting gas mixture. The equations
are based on the kinetic model in a relaxation approximation and they are a gen-
eralization of the quasigasdynamic equations studied before. As an example of
applicability of the system proposed, we present calculations of flows in a shock
wave for an argon-xenon mixture and of a binary diffusion problem for argon
and helium, in comparison with the results of modeling these problems using
the Direct Simulation Monte-Carlo method. A comparison with experimental
results is also presented.



Nomenclature

a = speed of sound

€ = thermal speed

d = molecular diameter

F = total energy

f, I = distribution functions
k = Boltzmann constant

Kn = Knudsen number

Ma = Mach number

M = molar mass

m = molecular mass

N = number of iterations

n = number density

Pr = Prandtl number

p = pressure

g = heat flux

R = perfect-gas constant per unit-mass
S = exchange terms

T = temperature

t = time

% = macroscopic velocity

~ = specific heat ratio

§ = shock wave thickness

A = mean free path

1 = viscosity coeflicient

v = collision frequency

p = density

T = p/p, Maxwellian relaxation time
E: molecular velocity

w = exponent in viscosity law
Subscripts and superscripts
1,2 = conditions ahead of and behind the shock wave, respectively
a,b = gas species

ref = reference conditions

() “free parameters”



1 Introduction

The numerical simulation of gas-mixture flows is of great interest for both theoretical
considerations and practical applications. An eflicient simulation of non-reacting
gas flows is a necessary step before developing models of gas flows with chemical
reactions which in turn have a great practical directionality (e.g.[1]).

There are two groups of models for calculating gas-mixture flows. The first one
consists of kinetic models, i.e. models based on direct numerical simulation methods
(DSMC) or on the solution of the Boltzmann equation (e.g. [2]). The other group
consists of macroscopic-equation systems which are derived on the basis of Navier-
Stokes equations, in general by a phenomenological way, namely single-fluid and

two-fluid models (e.g.[3], [4]).

The kinetic approximation offers an adequate gas-flow description but, as all
kinetic models, has some disadvantages. In part, it loses its efficiency with decreas-
ing Knudsen or Mach numbers. As for calculations, the moment methods are more
efficient but the phenomenological ways of their derivation lead to a number of prob-
lems. These methods require the introduction of a number of additional constants,
the determination of which is a separate problem.

In this paper we propose a new macroscopic model to describe flows of a binary
non-reacting gas mixture. The model is a two-fluid approximation which is a system
of equations for density, momentum and energy of each component. The system
of macroscopic equations (named QGDM) is based on the kinetic equation in its
relaxation approximation and is a natural generalization of the recently proposed
quasigasdynamic (QGD) equations (e.g. [5] - [8]) for a gas mixture. Note that
previously the QGD equations were generalized for gas flows in translational [9],
[10] and rotational [11], [12] non-equilibrium.

2 Kinetic model

In 1954 Bhatnagar, Gross and Krook [13] published their famous equation (BGK)
which is the Boltzmann equation with the collisional integral in its relaxation form.
Though having a simple form, the model conserves the basic properties of the initial
kinetic equation, therefore it has been applied widely to analyse a broad scope of
problems. In 1962 Sirovich [14] gave a generalization of the BGK model for a gas
mixture. In 1964 Morse [15], on the basis of the conservation relations, calculated
the “free parameters” missing before. In 1970 Wu and Lee [16] applied the kinetic
model to calculate the one- dimensional flow of a binary mixture in a shock tube. In
1979 Platkowski [17] applied the mentioned model supplemented with Mott-Smith
assumption to shock wave structure simulations. Those calculations were done for
a gas with Prandtl number equal to unity Pr = 1, which is a consequence of the
relaxation formulation in the initial kinetic model. Later some advanced kinetical
models for a multicomponent gas were proposed (e.g. [18]).

We give a short description of the model according to [16].

Let the mixture consist of gas a and gas b with number densities n, and n;
and accordingly with densities p, = mgyn, and p, = mpny, where m, and my are



the masses of gas molecules a and b, respectively. Each gas is characterized by its
temperature T; and macroscopic velocity @;, where ¢ = a,b. The perfect gas constant
is R; = k/m;, where k is the Boltzmann constant.

Then according to [16] the kinetic model for the mixture can be expressed as
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where fz(f,é', t) is the distribution function for species ¢, E: i 4 € is the molecule
velocity, ¢ is the thermal velocity. v, and v, are the frequencies for self-collisions,
Ve is the frequency for cross collisions of @ molecules with b molecules and v, is
the frequency for cross collisions of b molecules with ¢ molecules. The total number
of collisions between species @ and b should be balanced, so

NoVah = NplVpg - (3)

F,, Fy and F,, I}, are Maxwellian distribution functions defined as follows:
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“Free parameters” (overlined) are present in formulas (4) - (7). According to
[15], They can be related to gas parameters
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The distribution functions are interrelated and determine the macroscopic char-
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Below this kinetic model is used by the authors to derive a system of macroscopic
equations (QGDM) that describes the flow of a non-reactive binary mixture.

3  Macroscopic equations

Let us assume that the distribution functions for particles a and b are close to the
corresponding local Maxwellian functions and can be represented approximately as
gradient expansions in the vicinity of their equilibrium functions in the following
form

fa%Fa_T(gV)Fav (15)

fo — Fy, — T(gV)Fb. (16)

Here 7 is the Maxwellian relaxation time for the mixture. Its value is close to the
mean time between collisions and it is defined as

T = u/p, (17)

where p is the mixture viscosity, p is the mixture pressure, equal to the sum of
partial pressures, that is

P = ps+ pp, where p, = poRTo,  po = ppRpT. (18)
The last two formulas are the partial equations of state.

We replace the true values of the distribution functions f,, f, in the convective
terms of equations (1) - (2) by the (15) - (16) approximate values; then the kinetic
model (1) - (2) is replaced by the approximate equations having the forms
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% + ViEE, = ViV EEF, = v(Fy — fo) + vsa (B — fi)- (20)

Here subscripts ¢, j correspond to the space coordinates.

The macroscopic QGDM equations are derived by moment averaging of (19) -
(20) over the velocity space €', To derive the macroscopic, or moment, equations we
use the same method as was applied to derive the quasigasdynamic (QGD) equations
for a one-component gas flow (see [10], [12]). For both gases the systems of equations
have the same form, so we describe the derivation procedure for gas a, omitting the
subscript a.

Let us evaluate certain integrals useful for the future procedure.

/Cichdgz 9p, (21)
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The limits of integration in all these integrals are infinite.

Integrating (19) with weight 1 and using (9), (12) and (21), we obtain

8f B
at/f < = at'”’

/VifiFdé?: Vi /(uZ + ¢V Fde = Vipu';

/ViTijiijdg: VTV, /(uZ + Ci)(uj + Cj)FdE:
= VitV (pu'v! +/CiCde5) = VitV (pu'e! + g% p).

As will be shown below the integral on the right-hand side of (19) vanishes.

Thus, we obtain the continuity equation in the form

J
57 Vi ipu’ = ViV (pu'n’ + gp). (26)



To derive the momentum equation, we integrate (19) with weight ¢*, using (10),
(12), (21) and (22):
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For the collision integral from equation (19) gis not a collisional invariant, because
of momentum exchange between the species. Thus, the right-hand side integral does
not vanish. It is called the exchange term and denoted here as S*.

Combining the above relations yields the following equation for pu*:
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In this case also (19) 5?2/2 is not a collisional invariant, because the species of the
mixture may exchange energy. Thus, the last integral from Eq.(19) does not vanish.

It is an exchange term denoted as S¥.

Combining these expressions and differentiating by parts the term containing
the product of pressures, we obtain the following equation for energy:
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This method of deriving moment equations leads to expressions for the heat flux
in which the Prandtl number is equal to unity. To extend the equations to the case
of an arbitrary Prandtl number, the next to last term in the energy equation should
be multiplied by Pr—1!

The energy equation is derived here for a monoatomic gas, that corresponds
to v = 5/3. The generalization for the gases with internal (rotational) degrees of
freedom was made in [11], [12] and can be introduced by replacing the coefficient
5/3 by 7 in the energy expressions (13), (14) (3p/2 — p/(y—1)) and in the last two
terms of energy equation (28) (5/2 — v/(y — 1)).



4  Calculation of exchange terms

The right-hand sides of the QGDM equations include exchange terms that are the
moments of the collision integral, which arise when averaging over the molecular
velocities. Using the relaxation model makes it possible to calculate those moments
and to express them in terms of the gas macroparameters.

In the equation for density (19) the exchange terms are equal to zero. Indeed,
the direct integration according with (9) gives

[vatba = i€ = va( [ Fud = [ 1,48 = valp = pa) =0,

[ vastFu = 1€ = vas( [ Fudé = [ £a0€) = via(pa = pa) =0

Integration with weight € when taking into account (10), (11) allows to calculate
the exchange term in equation (27):

/Va (Fy — fa)gdg: Va(patla — paila) = 0,

/Vab(Fa - fa)gdg: Vab(pa?fa - paﬁa) = Sg

In a similar manner, by averaging with weight 5?2/27 the exchange terms are calcu-
lated for the energy equation (28) when taking into account (12), (13)
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For gases a and b the exchange terms have the form:

Sg = Vabpa(?fa - ﬁa)7 Sl? = Vbapb(?fb - ﬁb)v

SE =vy(Ey — Ea),  SE =va(Ey — Ey), (29)
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By = (pall,) /24 o/ (va = 1) Pa = paRaT,
By = (pviiy)/2+ o/ (s = 1) 9y = T, (30)
According to (3)
St St=0,  SEF+sEF=0 (31)

that coincides with momentum and energy conservation.

Thus, the QGDM model allows for an exchange of impulse and energy between
the mixture components, the intensity of which is proportional to cross-collision
frequencies between particles of different gases. There are no exchange terms in the
equations for density, which is natural because the mixture components are supposed
not to react with each other.



5 Determination of collision frequencies

To close the system of QGDM equations, it is necessary to estimate the cross-collision
frequencies v, and vy, and the relaxation time 7.

Relations between frequencies of collisions of a molecules with each other (self-
collisions) and with b molecules (cross-collisions), according to [16], can be calculated
in the following way:

da 2 @ @
vy = 1 (_b> Ma + 1M g (32)
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here d, is the effective molecular diameter for gas a, d,; is the effective diameter
which can be determined, for example, according to [2], p.16, as dqp = 0.5(d, + dp).
In turn, the collision frequency v, can be connected with the gas viscosity. In the
approximation of the VHS and VSS models for particle interactions, this relationship
has a form [2], p.90 :

Pa Ta w
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where  Q(w,, o) = (33)

For further calculations o, = 1 is used, that conforms to the VHS model ([2],
p.41). In this case we write Q(w,, 1) = Q(w,).

The total number of collisions between molecules of gases @ and b should be bal-
anced, i.e. relation (3) must be satisfied. But the expressions for collision frequen-
cies (32) and (33) comply with this balance relation in the only case of Maxwellian
molecules (w = 1), when Ty cf = Threp. Thus, if one of the cross-collision frequencies
is determined according to (32) -(33), then the other frequency should be determined
from balance relation (3).

In equations (26), (27), (28) there is a parameter 7 defined as the Maxwellian
relaxation time for a mixture (17). To determine the binary-mixture viscosity, there
is, for example, the Wilke formula [20]:

Pb Ma -t Pa Mb -t
= Mg 1‘|’Ga - ) + <1+G a ™ ) s
H=pn ( bpa M, b b oy M,

(1 + \/:ua/:ub\/-/\/lb/-/\/la)2
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here M, M, are the molar masses of gases a and b respectively.

where G =

(34)

Note, that the collision frequencies and the binary-mixture viscosity are parame-
ters “external” to the QGDM model and could be determined by other estimations.
For example, other expressions exist for the frequency of cross-collisions (see, for
example, [2], p.96). Another expression for the binary-mixture viscosity is written
in the book by Chapman and Cowling [21], p.275 and in [3]. In [22] the viscosity
coeflicients of separate components are given.



6 Quasigasdynamic (QGDM) equations for a gas mix-
ture

Raising indices in the resulting equations by means of the metric tensor we obtain
the final QGDM equations for a binary gas mixture in a invariant form. For both
gases the systems of equations have the same form and the system of equations,
describing gas a, is written below:

9 . o .
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where the energy for gas a writes

By = (pa®)/2+ pa/ (12 — 1). (38)

The exchange terms are calculated as (29), (30), the “free parameters” are calculated
as (8), the frequencies of cross-collisions and the viscosity coefficient of the binary
mixture can be found using (32), (33) and (34). When supplemented with boundary
conditions, this set of equations constitutes a closed model for computing flows of
a binary gas mixture in a two-fluid approach. It is much more simple than the
two-fluid model for a gas mixture, as obtained by the Chapman-Enskog procedure
[19].

The mixture parameters (no subscript) relate to the species parameters:

n="q+ N, P=pPatPs, P=Da+ Db U= (patia + prus)/p,
T = (n Ty +mTy)/m, m= (mgng +mpnp)/n, p=pRT,
R = (paRo+ppRy)/p = k/m. (39)

For a single-component gas, the system (35) - (38) coincides with the QGD sys-
tem investigated earlier (e.g. [6] — [8]). The relation between QGD and Navier-Stokes
equations for a dilute gas was analysed in [7], [8]. In particular, QGD equations were
presented as balance equations for mass, momentum, and total energy in local form:

13} » Jd - 0 E S
—p+V;J' =0, — + V., J'u" =V, P”, —FE4+V,J'—=V,;(A"—¢"). (4
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Here . . . . .
J' = pu' —7(V;pu'v) + V'p) (41)

is the mass flux density. The stress tensor P*, the heat flux ¢*, and the vectors J*
and A’ are sums of the corresponding variables in the Navier-Stokes representation
with additional terms whose asymptotic order is O(72) for steady flows if the bulk
viscosity 7 in the Navier-Stokes model is approximated by the expression [10]

=u(5/3 —v), where pu=pr.

For a one-dimensional plane flow, the QGDM system simplifies and writes as

86%1 + %paua = ;ﬂ;;(mu + Pa), (42)
88,? + aax prup = aa aa (ppui + 1), (43)
Dol b (gt 4 00) = Tt + Spaa) + 52 )
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aib + 88 uy(Ey 4 pp) = 88 88 up (B + 2.5p5) +

v O _ppOpe w1 0 31%
'yb—l@prb Oz 'yb—lPrb Oz TP Oz +Sb (47)

This equation system will be used further for the numerical simulation of binary gas
mixtures.

7 Shock wave structure in a helium - xenon mixture

As a first example of using the QGDM equations we considered the problem of a
stationary shock wave structure in a mixture of helium (He is gas a) and xenon (Xe
is gas b). Density profiles for these gases, measured with the use of an electron gun
and a laser interferometer, can be found in [23]. Measurements were performed for
the following variants:

e variant V1 - 98,5% He and 1.5% Xe
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e variant V2 - 97% He and 3% Xe
e variant V3 - 94% He and 6% Xe
e variant V4 - 91% He and 9% Xe

For variant V2, there is a calculation by the DSMC method [2], the results of
which can be considered as a reference.

Table 1 presents the parameters of the mixture before the shock wave, chosen in
accordance with the experimental data from [23] and with the calculation from [2].
In Table 2 are physical parameters of helium and xenon according to [2], which are
necessary to perform calculations by the QGDM model. The Prandtl number for
the gases is constant and equal to Pr = 2/3.

The system of equations (42) - (47) is solved in non-dimensional variables taking
as dimensional scales the following characteristics of gas a in the upstream flow:

Pares is the density, aqrer = \/VaFolarey is the sound velocity at temperature T, ,
Agres is the mean free path, that is computed as in [2]:

\— 4u 1
© pVRT V270(w)

Then relations between the dimensional and dimensionless parameters have the
following forms (all parameters of gas b are scaled by parameters of gas a):

(48)

P = ﬁparef7 a4 = aaarefv U = aaarefv P = ﬁparefairef7 m = mparengref7
s airef - ~ ~Aaref o1
T=T =TTores, T =TAgpey, t=1——, n=n5—.
Yalta Agref Aaref

Equations (42) - (47) do not change their forms after the process of scaling. The
relations between the parameters of the gases (link equations) write as

iad R ot T aNa T a~ Ra
iy =T, =4 220T, T, =TPe gy = JaPb e
Ya Ra Pa Py Rp

pires [ Tares )
~  Pwe ~  _ Hbref aref Fwp
fa =17 fib = T
* . Haref (Tbref) b
here pipyer and Ty,.r are the viscosity coefficient and the corresponding temperature
of gas b, used in the viscosity-law (33).

In Table 3 are values of the non-dimensional parameters in the upstream gas
flow for variant V2.

The boundary conditions on the right and left boundaries were taken from the
the Rankine-Hugoniot conditions for a stationary shock wave in a gas mixture. The
variables on the right of the discontinuity are computed as follows

_ (v +1)Md? by =p 2yMa® — v+ 1
p2 p12+(7_1)Ma27 2 1 ’)/—I—l b
_ 2
U2=U12+(7 1)Ma7 (49)
(v +1)Ma?
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where subscripts 1 and 2 refer to Rankine-Hugoniot conditions upstream (1) and
downstream (2) of the shock wave. The component temperatures are found from
the state equations.

Assume that the temperatures and velocities of the components before and after
the shock wave are equal, and the mass-fraction of the components after the tran-
sition through the shock are unchanged. Thus on the basis of conditions (49), the
parameters of each component of the mixture are derived from the ratios:

pa1/por = pa2/pr2,  LTar =Toa =11, g1 = upr = ug,
Toy =Th =To, gz = upy = us. (50)

The initial conditions are a discontinuity at point z = 0:

at x <0 Pa = Pals Pb = Pbl, Ta:Tb:Th Ug = Up = Uj.
at # > 0 Pa = Pa2, Pb = P12, T, =1, = T27 Ug = Up = U2. (51)

The same quantities are used as boundary conditions.

To solve the (42) - (47) system, an explicit difference scheme was applied where
the steady-state solution was obtained as the limit of a time-evolving process. All
spatial derivatives, including the convective terms, were approximated by central
differences (see, for instance, [10], [12]).

The problem was solved using a uniform spatial grid with a convergence crite-
rion ¢,, = 107°. When refining the grid by a factor of 2 and 4, the differences
between the computational results were extremely small, which allows to conclude
that grid convergence has been reached. As an example, the parameters of numerical
computation for variant V2 are presented in Table 4.

The profiles of gas-dynamic parameters (those of velocity, density, temperature)
are given in a normalized form on the basis of upstream and downstream Rankine-
Hugoniot conditions. In this case, p — (p — p1)/(p2 — p1); similarly for the temper-
ature. For the velocity u — (u — ug)/(u1 — u2).

Let the computational results for variant V2 be considered in detail. In Figs.
1 - 5 the profiles of gasdynamic parameters at the shock-wave front are shown in
comparison with the corresponding results obtained in [2] on the basis of the DSMC
method. The curves, corresponding to the DSMC calculations, are superimposed on
the QGDM data, so that the values of the mean density be coincide at z = 0.

In Figs. 1 and 2 are the profiles of density and temperature of helium and xenon.
In Fig.3 are the distributions of the mean density and temperature for the mixture.
Like in the DSMC model, the temperature of xenon overshoots its final value by
~ 10% and the mean mixture temperature is close to the helium temperature.

In Fig. 4 are presented the diffusion velocities wug, and wug, reduced by the
upstream flow velocity.

Udq = Ug — U, Ugp = Up — U (52)

In Fig. 5 the xenon concentration is presented. Within the shock wave, it falls
to approximately half its initial value.
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The curves demonstrate that the QGDM model reflects at least qualitatively the
main features of the flow.

Variants V1,V3 and V4 correspond to the conditions of density measurements
by Walenta [23]. The comparison of experimental results with those obtained by the
present numerical work leads to the same conclusion.

On the basis of the calculations for variants V1 - V4 the shock-wave thicknesses
dme/Ame and dx./Ax. have been plotted in Fig.6 against the concentration of Xe
in the upstream mixture and compared with the results of [23]. In this case, the
shock-wave thickness is calculated as

P2— M

0= max(dp/dx) (53)
The mean free path for each component is computed according to (48) from the
parameters of each gas component before ahead of the shock wave. The experimental
data are plotted as a solid line; the authors’ results as a dashed line. All the curves
are represented in the form similar to [23]. For variant V1 (with the smallest Xe
concentration), the experimental and computational results coincide practically. For
variant V2 the experimental, QGDM and DSMC results are also in good agreement
(DSMC shock-wave thickness is not plotted). With increasing Xe concentration,
the calculated shock wave thickness is larger than the experimental values. (Note
that the He density profiles in the DSMC, QGDM and BGK [17] calculations do
not exhibit the overshoot found in the experiment.) Nevertheless, the qualitative
behaviour is reproduced by the calculations. This is also consistent with the well-
known fact that the relative shock wave thickness increases when the upstream Mach
number decreases.

The shock wave thickness is a very sensitive characteristic of the problem, and
its calculation based on moment equations for a single-component gas corresponds
to the experimental data only in the case of small Mach numbers Ma < 2.

8 Argon — helium diffusion

As a second example of application of the QGDM equations, the problem of helium
and argon mass diffusion was studied for conditions that correspond to a computa-
tion by the DSMC method [2]. Let two reservoirs, filled with the gases be located
at a distance . = Im. He is gas a in the right reservoir, and Ar is gas b in the
left reservoir. The number densities in the reservoirs are kept constant and equal
to n = 2.8 -10%°m=3.The gases in the reservoirs are assumed to have the same
temperature 7" = 273K and the same velocity equal to zero.

The constants for helium and argon, necessary for the calculations, are shown in
Table 5 according to [2].

Using these constants, the missing initial data can be obtained: helium density
pa = nm, = 1.862 - 107%kg/m?; sound velocity a, = v/7yaRaly = 971.9m/s; mean
free path computed by formula (48) A, = 1.479 - 10~ %m; argon density p, = nm; =
1.856 - 10~kg/m?>; sound velocity a, = /7 RyI, = 307.81m/s; mean free path
computed by formula (48) is Ay = 4.63 - 10™>m.
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As in the previous section, computing was performed in dimensionless variables
with all quantities normalized by the parameters of gas a - helium in the reservoir.
The corresponding non-dimensional parameters are presented in Table 6.

A one-dimensional plane flow described by equations (42) - (47) was considered.
As boundary conditions the following non-dimensional relations were used:
at the left-hand boundary (1)

du, 0
pa=1.—10710 py =107 T,=Ty=1, S2=""—y,
Jx dx
at the right-hand boundary (2)
du, 0
pp=1.-1071% p, =107 T,=T,=1, T2=""=
Jx dx

That is, we assumed that in each reservoir a fraction ~ 10719 of the other gas exists.
At initial time, the density of the components between the reservoirs is assumed to
change linearly :

pole) = eE= D a0 =0 (g,

py() = ple =) ; mie=0, +pp(z=0).

We used the same numerical algorithm as in the previous section when solving the
QGDM equations. The problem was solved using a uniform space grid consisting of
339 points with spatial grid step h = 0.2 , which corresponded to 0.2A, and 0.64A,.

The number densities of both gases are plotted in Fig. 7 against the position
between the reservoirs. Each of them is reduced by the corresponding reservoir
density. The diffusion velocities are plotted in Fig. 8. In both figures the comparison
with DSMC results [2] is given. Again the present results agree at least qualitatively
with the reference results. The point of equal concentration point is shifted from the
middle of the domain to the left, closer to the reservoir containing the heavier gas.
The diffusion velocity of helium is larger than that of argon. The diffusion velocity
of helium exhibits a minimum in the middle of the computational domain.

9 Conclusion

The macroscopic system of the QGDM equations is constructed on the basis of
the kinetic equation system in the relaxation approximation to describe the non-
reacting-gas mixture flow. Contrary to some widely known models, the QGDM sys-
tem consists of the equations for density, momentum and energy of each component,
i.e. it is a two-fluid approximation, that makes it possible to describe in detail the
behaviour of each component.

The momentum and energy equations include exchange terms, that allow for the
appropriate exchanges between the gas components. To calculate these terms the
cross-collision frequencies must be estimated. The viscosity of the mixture must
also be estimated. The QGDM model includes diffusion processes but does not
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require coefficients of thermo-, baro- and self- diffusion, which are included in the
Navier-Stokes models, and the determination of which is a separate task.

In the present calculations we used quite simple models for the mixture viscosity
and for the frequency of cross-collisions and a rather large mass ratio of the species.
Nevertheless the QGDM model describes reasonably well the mixture behaviour in
the two problems considered. Further improvement can be expected from more
accurate expressions.

The system of the QGDM equations is written in an invariant form that allows
problems to be solved under various spatial formulations. The algorithms developed
on the basis of the QGDM model appear to be more stable than similar algorithms
based on the conventional conservation equations.

Thus, the QGDM equations are worth being studied further for future other
applications.
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11 Figure captions

Fig.1 Density profiles in a He - Xe mixture.
Fig.2 Temperature profiles in a He - Xe mixture.
Fig.3 Mean temperature and density profiles in a He - X'e mixture.
Fig.4 Diffusion velocities in a shock wave.
Fig.5h Xenon concentration in a shock wave.
Fig.6 Shock wave thickness of helium and xenon.
Fig.7 Number densities in the Ar - He diffusion problem.
Fig.8 Diffusion velocities in the Ar - He diffusion problem.
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Table 1: Dimensional parameters of mixture components for variants V1 — V4

| Vi1 | V2 | V3 | V4
He Xe He Xe He Xe He Xe
p(kg/m3) - 10° | 5.15 2.57 | 5.16 2.22 4.91 10.3 | 4.57 14.8
p(Pa) 33.14 | 051 | 33.21 | 1.02 | 31.62 | 2.02 | 2942 | 2.91
T(K) 310.
u(m/s) 3076.76 2882.6 2672.8 2530.3
Ma 2.97 [17.01 | 278 [ 15.93 | 2.58 [ 14.78 | 2.44 [ 13.99

Table 2: Tabulated values for mixture components

He Xe
m(kg) 6.65- 10727 | 218.- 10727
R(J/(kg - K)) 2076.2 63.33
M(kg/mol) 4.0 131.4
d(m) 2.30-1071% | 5.65-1071°
5 1.66 1.66
w 0.66 0.85
pref (N/(m-s))atT = 273K | 2.03-107° | 2.34.10~°

Table 3: Non-dimensional parameters for variant V2

Gas a (He) | Gas b (Xe) | mixture
p 1. 1.011 2.011
T 1. 1. 1.
a 1. 0.175 0.715
A 1. 5.485 1.134
p 0.6 0.0185 0.618
Ma 2.78 15.93 3.89

Table 4: Calculation parameters for variant V2

grid 601 | grid 1201
grid step h 0.5 0.25
time step At 48-1073 | 1.2.1073
number of iterations Nz, 90251 360450
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Table 5: Physical properties of mixture components

He Ar
m(kg) 6.65-10=27 | 66.3- 10727
R(J/(kg - K)) 2076.2 208.24
Mkg/mol) 4.0 39.926
d(m) 230107 | 4.17-10"%
~ 1.66 1.66
w 0.66 0.81
Pr 0.666 0.666
tref (N/(m-s))at T'= 273K | 1.865- 10-5 | 2.117-105

Table 6: Non-dimensional parameters

Gas a (He) | Gas b (Ar)
p 1. 9.969
T 1. 1.
a 1. 0.316
A 1. 0.313
p 0.6 0.60
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Figure 1: Density profiles in a He - X'e mixture
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Figure 2: Temperature profiles in a He - X'e mixture
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Figure 4: Diffusion velocities in a shock wave
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Figure 8: Diffusion velocities in the Ar - He diffusion problem

29



