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Abstract

This work is devoted to the derivation of moment equations for the descrip�
tion of a gasdynamic �ow of a binary non�reacting gas mixture� The equations
are based on the kinetic model in a relaxation approximation and they are a gen�
eralization of the quasigasdynamic equations studied before� As an example of
applicability of the system proposed� we present calculations of �ows in a shock
wave for an argon�xenon mixture and of a binary di�usion problem for argon
and helium� in comparison with the results of modeling these problems using
the Direct Simulation Monte�Carlo method� A comparison with experimental
results is also presented�
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Nomenclature

a � speed of sound

�c � thermal speed

d � molecular diameter

E � total energy

f� F � distribution functions

k � Boltzmann constant

Kn � Knudsen number

Ma � Mach number

M � molar mass

m � molecular mass

N � number of iterations

n � number density

Pr � Prandtl number

p � pressure

q � heat �ux

R � perfect�gas constant per unit�mass

S � exchange terms

T � temperature

t � time

�u � macroscopic velocity

� � speci�c heat ratio

� � shock wave thickness

� � mean free path

� � viscosity coe�cient

� � collision frequency

� � density

	 � �
p� Maxwellian relaxation time
�� � molecular velocity

� � exponent in viscosity law

Subscripts and superscripts

�� 	 � conditions ahead of and behind the shock wave� respectively

a� b � gas species

ref � reference conditions

�� 
free parameters�

	



� Introduction

The numerical simulation of gas�mixture �ows is of great interest for both theoretical
considerations and practical applications� An e�cient simulation of non�reacting
gas �ows is a necessary step before developing models of gas �ows with chemical
reactions which in turn have a great practical directionality �e�g������

There are two groups of models for calculating gas�mixture �ows� The �rst one
consists of kinetic models� i�e� models based on direct numerical simulation methods
�DSMC� or on the solution of the Boltzmann equation �e�g� �	��� The other group
consists of macroscopic�equation systems which are derived on the basis of Navier�
Stokes equations� in general by a phenomenological way� namely single��uid and
two��uid models �e�g����� �����

The kinetic approximation o�ers an adequate gas��ow description but� as all
kinetic models� has some disadvantages� In part� it loses its e�ciency with decreas�
ing Knudsen or Mach numbers� As for calculations� the moment methods are more
e�cient but the phenomenological ways of their derivation lead to a number of prob�
lems� These methods require the introduction of a number of additional constants�
the determination of which is a separate problem�

In this paper we propose a new macroscopic model to describe �ows of a binary
non�reacting gas mixture� The model is a two��uid approximation which is a system
of equations for density� momentum and energy of each component� The system
of macroscopic equations �named QGDM� is based on the kinetic equation in its
relaxation approximation and is a natural generalization of the recently proposed
quasigasdynamic �QGD� equations �e�g� ��� � ���� for a gas mixture� Note that
previously the QGD equations were generalized for gas �ows in translational ����
���� and rotational ����� ��	� non�equilibrium�

� Kinetic model

In ���� Bhatnagar� Gross and Krook ���� published their famous equation �BGK�
which is the Boltzmann equation with the collisional integral in its relaxation form�
Though having a simple form� the model conserves the basic properties of the initial
kinetic equation� therefore it has been applied widely to analyse a broad scope of
problems� In ���	 Sirovich ���� gave a generalization of the BGK model for a gas
mixture� In ���� Morse ����� on the basis of the conservation relations� calculated
the 
free parameters� missing before� In ���� Wu and Lee ���� applied the kinetic
model to calculate the one� dimensional �ow of a binary mixture in a shock tube� In
���� Platkowski ���� applied the mentioned model supplemented with Mott�Smith
assumption to shock wave structure simulations� Those calculations were done for
a gas with Prandtl number equal to unity Pr � �� which is a consequence of the
relaxation formulation in the initial kinetic model� Later some advanced kinetical
models for a multicomponent gas were proposed �e�g� ������

We give a short description of the model according to �����

Let the mixture consist of gas a and gas b with number densities na and nb
and accordingly with densities �a � mana and �b � mbnb� where ma and mb are
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the masses of gas molecules a and b� respectively� Each gas is characterized by its
temperature Ti and macroscopic velocity �ui� where i � a� b� The perfect gas constant
is Ri � k
mi� where k is the Boltzmann constant�

Then according to ���� the kinetic model for the mixture can be expressed as


fa

t
� ���r�fa � �a�Fa � fa� � �ab� 
Fa � fa�� ���


fb

t
� ���r�fb � �b�Fb � fb� � �ba� 
Fb � fb�� �	�

where fi��x� ��� t� is the distribution function for species i� �� � �u � �c is the molecule
velocity� �c is the thermal velocity� �a and �b are the frequencies for self�collisions�
�ab is the frequency for cross collisions of a molecules with b molecules and �ba is
the frequency for cross collisions of b molecules with a molecules� The total number
of collisions between species a and b should be balanced� so

na�ab � nb�ba� ���

Fa� Fb and 
Fa� 
Fb are Maxwellian distribution functions de�ned as follows�

Fa �
�a

�	�RaTa����
exp���

�� � �ua�
�

	RaTa
�� ���

Fb �
�b

�	�RbTb����
exp���

�� � �ub�
�

	RbTb
�� ���

and


Fa �
�a

�	�Ra

Ta����

exp���
�� � 
�ua��
	Ra


Ta
�� ���


Fb �
�b

�	�Rb

Tb����

exp���
�� � 
�ub��
	Rb


Tb
�� ���


Free parameters� �overlined� are present in formulas ��� � ���� According to
����� They can be related to gas parameters

�ua � �ub �
ma�ua �mb�ub
ma �mb

�

Ta � Ta �
	mamb

�ma �mb��

�
Tb � Ta �

mb

�k
��ub � �ua�

�

�
�

Tb � Tb �
	mamb

�ma �mb��

�
Ta � Tb �

ma

�k
��ub � �ua�

�

�
� ���

The distribution functions are interrelated and determine the macroscopic char�
acteristics of the gas as

Z
fid�� �

Z
Fid�� �

Z

Fid�� � �i� ���
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Z
��fid�� �

Z
��Fid�� � �i�ui� ����

Z
�� 
Fid�� � �i 
�ui� ����

Z
�cfid�� �

Z
�cFid�� �

Z
�c 
Fid�� � �� ��	�

Z ���

	
fid�� �

Z ���

	
Fid�� �

�i�u
�

i

	
�
�pi
	
� Ei� ����

Z ���

	

Fid�� �

�i 
�ui
�

	
�
�
pi
	
� 
Ei� ����

Below this kinetic model is used by the authors to derive a system of macroscopic
equations �QGDM� that describes the �ow of a non�reactive binary mixture�

� Macroscopic equations

Let us assume that the distribution functions for particles a and b are close to the
corresponding local Maxwellian functions and can be represented approximately as
gradient expansions in the vicinity of their equilibrium functions in the following
form

fa � Fa � 	���r�Fa� ����

fb � Fb � 	���r�Fb� ����

Here 	 is the Maxwellian relaxation time for the mixture� Its value is close to the
mean time between collisions and it is de�ned as

	 � �
p� ����

where � is the mixture viscosity� p is the mixture pressure� equal to the sum of
partial pressures� that is

p � pa � pb� where pa � �aRaTa� pb � �bRbTb� ����

The last two formulas are the partial equations of state�

We replace the true values of the distribution functions fa� fb in the convective
terms of equations ��� � �	� by the ���� � ���� approximate values� then the kinetic
model ��� � �	� is replaced by the approximate equations having the forms


fa

t
�ri�

iFa �ri	rj�
i�jFa � �a�Fa � fa� � �ab� 
Fa � fa�� ����
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fb

t
�ri�

iFb � ri	rj�
i�jFb � �b�Fb � fb� � �ba� 
Fb � fb�� �	��

Here subscripts i� j correspond to the space coordinates�

The macroscopic QGDM equations are derived by moment averaging of ���� �
�	�� over the velocity space �i� To derive the macroscopic� or moment� equations we
use the same method as was applied to derive the quasigasdynamic �QGD� equations
for a one�component gas �ow �see ����� ��	��� For both gases the systems of equations
have the same form� so we describe the derivation procedure for gas a� omitting the
subscript a�

Let us evaluate certain integrals useful for the future procedure�

Z
cicjFd�� � gijp� �	��

where gi�j is the metric tensor� Z
cicjckFd�� � �� �		�

Z
c�xFd

�� �
Z
c�yFd

�� �
Z
c�zFd

�� � �
p�

�
� �	��

Z
c�xc

�

yFd
�� �

Z
c�xc

�

zFd
�� �

Z
c�yc

�

zFd
�� �

p�

�
� �	��

Z
cicj�c�Fd�� � �

p�

�
gij � �	��

The limits of integration in all these integrals are in�nite�

Integrating ���� with weight � and using ���� ��	� and �	��� we obtain

Z

f


t
d�� �





t

Z
fd�� �





t
��

Z
ri�

iFd�� � ri

Z
�ui � ci�Fd�c � ri�u

i�

Z
ri	rj�

i�jFd�� � ri	rj

Z
�ui � ci��uj � cj�Fd�c �

� ri	rj��u
iuj �

Z
cicjFd�c� � ri	rj��u

iuj � gijp��

As will be shown below the integral on the right�hand side of ���� vanishes�

Thus� we obtain the continuity equation in the form





t
��ri�u

i � ri	rj��u
iuj � gijp�� �	��
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To derive the momentum equation� we integrate ���� with weight �k� using �����
��	�� �	�� and �		�� Z


f


t
�kd�� �





t
�uk�

Z
ri�

iF�kd�� � ri��u
iuk � gikp��

Z
ri	rj�

i�jF�kd�� � �uiujuk � p�ukgij � ujgik � uigjk��

For the collision integral from equation ���� �� is not a collisional invariant� because
of momentum exchange between the species� Thus� the right�hand side integral does
not vanish� It is called the exchange term and denoted here as Su�

Combining the above relations yields the following equation for �uk�





t
�uk �ri��u

iuk � gikp� � ri	rj

h
�uiujuk � p�ukgij � ujgik � uigjk�

i
� Su� �	��

To derive an equation for E� we average ���� with weight ���
	� using ��������
and �	����	��� Z


f


t

���

	
d�� �





t
E�

Z
ri�

iF
�

	
���d�� � ri

�

	

Z
�ui � ci�F���d�c � riu

i�E � p��

Z
ri	rj�

i�jF
���

	
d�� � ri	rj�u

iujE � 	uiujp�
�

	
uku

kgijp�
�

	

p�

�
gij��

In this case also ���� ���
	 is not a collisional invariant� because the species of the
mixture may exchange energy� Thus� the last integral from Eq����� does not vanish�
It is an exchange term denoted as SE�

Combining these expressions and di�erentiating by parts the term containing
the product of pressures� we obtain the following equation for energy�





t
E �riu

i�E � p� � ri	rj�u
iujE � 	uiujp�

�
�

	
uku

kgijp� �
�

	
ri	

p

�
rjpg

ij �
�

	
ri	prj

p

�
gij � SE � �	��

This method of deriving moment equations leads to expressions for the heat �ux
in which the Prandtl number is equal to unity� To extend the equations to the case
of an arbitrary Prandtl number� the next to last term in the energy equation should
be multiplied by Pr���

The energy equation is derived here for a monoatomic gas� that corresponds
to � � �
�� The generalization for the gases with internal �rotational� degrees of
freedom was made in ����� ��	� and can be introduced by replacing the coe�cient
��� by � in the energy expressions ����� ���� ��p
	� p
��� ��� and in the last two
terms of energy equation �	�� ��
	� �
�� � ����
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� Calculation of exchange terms

The right�hand sides of the QGDM equations include exchange terms that are the
moments of the collision integral� which arise when averaging over the molecular
velocities� Using the relaxation model makes it possible to calculate those moments
and to express them in terms of the gas macroparameters�

In the equation for density ���� the exchange terms are equal to zero� Indeed�
the direct integration according with ��� givesZ

�a�Fa � fa�d�� � �a�

Z
Fad�� �

Z
fad��� � �a��a � �a� � ��Z

�ab� 
Fa � fa�d�� � �ab�

Z

Fad�� �

Z
fad��� � �ab��a � �a� � ��

Integration with weight �� when taking into account ����� ���� allows to calculate
the exchange term in equation �	���Z

�a�Fa � fa���d�� � �a��a�ua � �a�ua� � ��Z
�ab� 
Fa � fa���d�� � �ab��a 
�ua � �a�ua� � Su

a �

In a similar manner� by averaging with weight ���
	� the exchange terms are calcu�
lated for the energy equation �	�� when taking into account ��	�� ����Z

�a�Fa � fa�
���

	
d�� � �a�Ea �Ea� � ��

Z
�ab� 
Fa � fa�

���

	
d�� � �ab� 
Ea � Ea� � SE

a �

For gases a and b the exchange terms have the form�

Su
a � �ab�a� 
�ua � �ua�� Su

b � �ba�b� 
�ub � �ub��

SE
a � �ab� 
Ea �Ea�� SE

b � �ba� 
Eb �Eb�� �	��

respectively� where


Ea � ��a
�u
�

a�
	 � 
pa
��a� ��� 
pa � �aRa

Ta


Eb � ��b
�u
�

b�
	 � 
pb
��b � ��� 
pb � �bRb

Tb� ����

According to ���

Su
a � Su

b � �� SE
a � SE

b � � ����

that coincides with momentum and energy conservation�

Thus� the QGDM model allows for an exchange of impulse and energy between
the mixture components� the intensity of which is proportional to cross�collision
frequencies between particles of di�erent gases� There are no exchange terms in the
equations for density� which is natural because the mixture components are supposed
not to react with each other�
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� Determination of collision frequencies

To close the system of QGDM equations� it is necessary to estimate the cross�collision
frequencies �ab and �ba and the relaxation time 	 �

Relations between frequencies of collisions of a molecules with each other �self�
collisions� and with bmolecules �cross�collisions�� according to ����� can be calculated
in the following way�

�ab � �a

�
dab
da

��sma �mb

	mamb

na
nb
� ��	�

here da is the e�ective molecular diameter for gas a� dab is the e�ective diameter
which can be determined� for example� according to �	�� p���� as dab � ����da� db��
In turn� the collision frequency �a can be connected with the gas viscosity� In the
approximation of the VHS and VSS models for particle interactions� this relationship
has a form �	�� p��� �

�a �
pa
�a
���a� �a�� �a � �aref �

Ta
Taref

��a�

where ���a� �a� �
���a � ����a � 	�

�a��� 	�a���� 	�a�
� ����

For further calculations �a � � is used� that conforms to the VHS model ��	��
p����� In this case we write ���a� �� � ���a��

The total number of collisions between molecules of gases a and b should be bal�
anced� i�e� relation ��� must be satis�ed� But the expressions for collision frequen�
cies ��	� and ���� comply with this balance relation in the only case of Maxwellian
molecules �� � ��� when Taref � Tbref � Thus� if one of the cross�collision frequencies
is determined according to ��	� ������ then the other frequency should be determined
from balance relation ����

In equations �	��� �	��� �	�� there is a parameter 	 de�ned as the Maxwellian
relaxation time for a mixture ����� To determine the binary�mixture viscosity� there
is� for example� the Wilke formula �	���

� � �a

�
� � Gab

�b
�a

Ma

Mb

�
��

� �b

�
� � Gba

�a
�b

Mb

Ma

�
��

�

where Gab �

�
� �

q
�a
�b

pMb
Ma

�
�

	
p
	 �� �Ma
Mb�

� ����

hereMa Mb are the molar masses of gases a and b respectively�

Note� that the collision frequencies and the binary�mixture viscosity are parame�
ters 
external� to the QGDM model and could be determined by other estimations�
For example� other expressions exist for the frequency of cross�collisions �see� for
example� �	�� p����� Another expression for the binary�mixture viscosity is written
in the book by Chapman and Cowling �	��� p�	�� and in ���� In �		� the viscosity
coe�cients of separate components are given�
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� Quasigasdynamic �QGDM� equations for a gas mix	
ture

Raising indices in the resulting equations by means of the metric tensor we obtain
the �nal QGDM equations for a binary gas mixture in a invariant form� For both
gases the systems of equations have the same form and the system of equations�
describing gas a� is written below�





t
�a �ri�a u

i
a �ri	 �rj�a u

i
au

j
a �ripa� � �� ����





t
�a u

k
a �ri�a u

i
au

k
a �rkpa � ri 	 �rj�a u

i
au

j
au

k
a �ri pa u

k
a �

rk pa u
i
a� �rk 	 ri pa u

i
a � Su

a � ����





t
Ea �riu

i
a�Ea � pa� � ri 	 �rj�Ea � 	pa�u

i
au

j
a �

�

	
riuaku

k
apa� �

�a
�a � �ri 	

pa
�a
ri pa � Pr��a

�a
�a � �ri 	 pari pa

�a
� SE

a � ����

where the energy for gas a writes

Ea � ��a�u
�

a�
	 � pa
��a � ��� ����

The exchange terms are calculated as �	��� ����� the 
free parameters� are calculated
as ���� the frequencies of cross�collisions and the viscosity coe�cient of the binary
mixture can be found using ��	�� ���� and ����� When supplemented with boundary
conditions� this set of equations constitutes a closed model for computing �ows of
a binary gas mixture in a two��uid approach� It is much more simple than the
two��uid model for a gas mixture� as obtained by the Chapman�Enskog procedure
�����

The mixture parameters �no subscript� relate to the species parameters�

n � na � nb� � � �a � �b� p � pa � pb� u � ��aua � �bub�
��

T � �naTa � nbTb�
n� m � �mana �mbnb�
n� p � �RT�

R � ��aRa � �bRb�
� � k
m� ����

For a single�component gas� the system ���� � ���� coincides with the QGD sys�
tem investigated earlier �e�g� ��� � ����� The relation between QGD and Navier�Stokes
equations for a dilute gas was analysed in ���� ���� In particular� QGD equations were
presented as balance equations for mass� momentum� and total energy in local form�





t
��riJ

i � ��




t
�uk �riJ

iuk � riP
ik �





t
E �riJ

iE

�
� ri�A

i � qi�� ����

��



Here
J i � �ui � 	�rj�u

iuj �rip� ����

is the mass �ux density� The stress tensor P ik� the heat �ux qi� and the vectors J i

and Ai are sums of the corresponding variables in the Navier�Stokes representation
with additional terms whose asymptotic order is O�	�� for steady �ows if the bulk
viscosity � in the Navier�Stokes model is approximated by the expression ����

� � ���
�� ��� where � � p	�

For a one�dimensional plane �ow� the QGDM system simpli�es and writes as


�a

t
�





x
�aua �





x
	




x
��au

�

a � pa�� ��	�


�b

t
�





x
�bub �





x
	




x
��bu

�

b � pb�� ����


�aua

t

�




x
��au

�

a � pa� �




x
	




x
��au

�

a � �paua� � Su
a � ����


�bub

t

�




x
��bu

�

b � pb� �




x
	




x
��bu

�

b � �pbub� � Su
b � ����


Ea


t
�





x
ua�Ea � pa� �





x
	




x
u�a�Ea � 	��pa� �

�
�a

�a � �




x
	
pa
�a


pa

x

�
�a

�a � �
�

Pra





x
	pa





x

pa
�a
� SE

a � ����


Eb


t
�





x
ub�Eb � pb� �





x
	




x
u�b�Eb � 	��pb� �

�
�b

�b � �




x
	
pb
�b


pb

x
�

�b
�b � �

�

Prb





x
	pb





x

pb
�b
� SE

b � ����

This equation system will be used further for the numerical simulation of binary gas
mixtures�


 Shock wave structure in a helium 	 xenon mixture

As a �rst example of using the QGDM equations we considered the problem of a
stationary shock wave structure in a mixture of helium �He is gas a� and xenon �Xe
is gas b�� Density pro�les for these gases� measured with the use of an electron gun
and a laser interferometer� can be found in �	��� Measurements were performed for
the following variants�

� variant V� � ��� � He and ��� Xe

��



� variant V	 � �� He and � Xe

� variant V� � �� He and � Xe

� variant V� � �� He and � Xe

For variant V	� there is a calculation by the DSMC method �	�� the results of
which can be considered as a reference�

Table � presents the parameters of the mixture before the shock wave� chosen in
accordance with the experimental data from �	�� and with the calculation from �	��
In Table 	 are physical parameters of helium and xenon according to �	�� which are
necessary to perform calculations by the QGDM model� The Prandtl number for
the gases is constant and equal to Pr � 	
��

The system of equations ��	� � ���� is solved in non�dimensional variables taking
as dimensional scales the following characteristics of gas a in the upstream �ow�
�aref is the density� aaref �

p
�aRaTaref is the sound velocity at temperature Taref �

�aref is the mean free path� that is computed as in �	��

� �
��

�
p
RT

�p
	�����

� ����

Then relations between the dimensional and dimensionless parameters have the
following forms �all parameters of gas b are scaled by parameters of gas a��

� � !��aref � a � !aaaref � u � !uaaref � p � !p�arefa
�

aref � m � !m�aref�
�

aref �

T � !T
a�aref
�aRa

� !TTaref � x � !x�aref � t � !t
�aref
aaref

� n � !n
�

��aref
�

Equations ��	� � ���� do not change their forms after the process of scaling� The
relations between the parameters of the gases �link equations� write as

!aa �
q
!Ta� !ab �

s
�b
�a

Rb

Ra

!Tb� !Ta �
�a!pa
!�a

� !Tb �
�a!pb
!�b

Ra

Rb
�

!�a � !T
�a
a � !�b �

�bref
�aref

�
Taref
Tbref

��b

!T�b
b �

here �bref and Tbref are the viscosity coe�cient and the corresponding temperature
of gas b� used in the viscosity�law �����

In Table � are values of the non�dimensional parameters in the upstream gas
�ow for variant V	�

The boundary conditions on the right and left boundaries were taken from the
the Rankine�Hugoniot conditions for a stationary shock wave in a gas mixture� The
variables on the right of the discontinuity are computed as follows

�� � ��
�� � ��Ma�

	 � �� � ��Ma�
� p� � p�

	�Ma� � � � �

� � �
�

u� � u�
	 � �� � ��Ma�

�� � ��Ma�
� ����

�	



where subscripts � and 	 refer to Rankine�Hugoniot conditions upstream ��� and
downstream �	� of the shock wave� The component temperatures are found from
the state equations�

Assume that the temperatures and velocities of the components before and after
the shock wave are equal� and the mass�fraction of the components after the tran�
sition through the shock are unchanged� Thus on the basis of conditions ����� the
parameters of each component of the mixture are derived from the ratios�

�a�
�b� � �a�
�b�� Ta� � Tb� � T�� ua� � ub� � u��

Ta� � Tb� � T�� ua� � ub� � u�� ����

The initial conditions are a discontinuity at point x � ��

at x � � �a � �a�� �b � �b�� Ta � Tb � T�� ua � ub � u��

at x � � �a � �a�� �b � �b�� Ta � Tb � T�� ua � ub � u�� ����

The same quantities are used as boundary conditions�

To solve the ��	� � ���� system� an explicit di�erence scheme was applied where
the steady�state solution was obtained as the limit of a time�evolving process� All
spatial derivatives� including the convective terms� were approximated by central
di�erences �see� for instance� ����� ��	���

The problem was solved using a uniform spatial grid with a convergence crite�
rion ��a � ����� When re�ning the grid by a factor of 	 and �� the di�erences
between the computational results were extremely small� which allows to conclude
that grid convergence has been reached� As an example� the parameters of numerical
computation for variant V	 are presented in Table ��

The pro�les of gas�dynamic parameters �those of velocity� density� temperature�
are given in a normalized form on the basis of upstream and downstream Rankine�
Hugoniot conditions� In this case� �� ��� ���
���� ���� similarly for the temper�
ature� For the velocity u� �u� u��
�u� � u���

Let the computational results for variant V	 be considered in detail� In Figs�
� � � the pro�les of gasdynamic parameters at the shock�wave front are shown in
comparison with the corresponding results obtained in �	� on the basis of the DSMC
method� The curves� corresponding to the DSMC calculations� are superimposed on
the QGDM data� so that the values of the mean density be coincide at x � ��

In Figs� � and 	 are the pro�les of density and temperature of helium and xenon�
In Fig�� are the distributions of the mean density and temperature for the mixture�
Like in the DSMC model� the temperature of xenon overshoots its �nal value by
� �� and the mean mixture temperature is close to the helium temperature�
In Fig� � are presented the di�usion velocities uda and udb� reduced by the

upstream �ow velocity�

uda � ua � u� udb � ub � u� ��	�

In Fig� � the xenon concentration is presented� Within the shock wave� it falls
to approximately half its initial value�

��



The curves demonstrate that the QGDM model re�ects at least qualitatively the
main features of the �ow�

Variants V��V� and V� correspond to the conditions of density measurements
by Walenta �	��� The comparison of experimental results with those obtained by the
present numerical work leads to the same conclusion�

On the basis of the calculations for variants V� � V� the shock�wave thicknesses
�He
�He and �Xe
�Xe have been plotted in Fig�� against the concentration of Xe
in the upstream mixture and compared with the results of �	��� In this case� the
shock�wave thickness is calculated as

� �
�� � ��

max�
�

x�
� ����

The mean free path for each component is computed according to ���� from the
parameters of each gas component before ahead of the shock wave� The experimental
data are plotted as a solid line� the authors" results as a dashed line� All the curves
are represented in the form similar to �	��� For variant V� �with the smallest Xe
concentration�� the experimental and computational results coincide practically� For
variant V	 the experimental� QGDM and DSMC results are also in good agreement
�DSMC shock�wave thickness is not plotted�� With increasing Xe concentration�
the calculated shock wave thickness is larger than the experimental values� �Note
that the He density pro�les in the DSMC� QGDM and BGK ���� calculations do
not exhibit the overshoot found in the experiment�� Nevertheless� the qualitative
behaviour is reproduced by the calculations� This is also consistent with the well�
known fact that the relative shock wave thickness increases when the upstream Mach
number decreases�

The shock wave thickness is a very sensitive characteristic of the problem� and
its calculation based on moment equations for a single�component gas corresponds
to the experimental data only in the case of small Mach numbers Ma � 	�

� Argon � helium di
usion

As a second example of application of the QGDM equations� the problem of helium
and argon mass di�usion was studied for conditions that correspond to a computa�
tion by the DSMC method �	�� Let two reservoirs� �lled with the gases be located
at a distance L � �m� He is gas a in the right reservoir� and Ar is gas b in the
left reservoir� The number densities in the reservoirs are kept constant and equal
to n � 	�� � ����m���The gases in the reservoirs are assumed to have the same
temperature T � 	��K and the same velocity equal to zero�

The constants for helium and argon� necessary for the calculations� are shown in
Table � according to �	��

Using these constants� the missing initial data can be obtained� helium density
�a � nma � ����	 � ����kg
m�� sound velocity aa �

p
�aRaTa � �����m
s� mean

free path computed by formula ���� �a � ����� � ����m� argon density �b � nmb �
����� � ����kg
m�� sound velocity ab �

p
�bRbTb � ������m
s� mean free path

computed by formula ���� is �b � ���� � ����m�

��



As in the previous section� computing was performed in dimensionless variables
with all quantities normalized by the parameters of gas a � helium in the reservoir�
The corresponding non�dimensional parameters are presented in Table ��

A one�dimensional plane �ow described by equations ��	� � ���� was considered�
As boundary conditions the following non�dimensional relations were used�
at the left�hand boundary ���

�a � ��� ������ �b � ��
���� Ta � Tb � ���


ua

x

�

ub

x

� ��

at the right�hand boundary �	�

�b � ��� ������ �a � ��
���� Ta � Tb � ���


ua

x

�

ub

x

� ��

That is� we assumed that in each reservoir a fraction � ����� of the other gas exists�
At initial time� the density of the components between the reservoirs is assumed to
change linearly �

�a�x� �
�a�x � L�� �a�x � ��

L
x� �a�x � ���

�b�x� �
�b�x � L�� �b�x � ��

L
x� �b�x � ���

We used the same numerical algorithm as in the previous section when solving the
QGDM equations� The problem was solved using a uniform space grid consisting of
��� points with spatial grid step h � ��	 � which corresponded to ��	�a and �����b�

The number densities of both gases are plotted in Fig� � against the position
between the reservoirs� Each of them is reduced by the corresponding reservoir
density� The di�usion velocities are plotted in Fig� �� In both �gures the comparison
with DSMC results �	� is given� Again the present results agree at least qualitatively
with the reference results� The point of equal concentration point is shifted from the
middle of the domain to the left� closer to the reservoir containing the heavier gas�
The di�usion velocity of helium is larger than that of argon� The di�usion velocity
of helium exhibits a minimum in the middle of the computational domain�

� Conclusion

The macroscopic system of the QGDM equations is constructed on the basis of
the kinetic equation system in the relaxation approximation to describe the non�
reacting�gas mixture �ow� Contrary to some widely known models� the QGDM sys�
tem consists of the equations for density� momentum and energy of each component�
i�e� it is a two��uid approximation� that makes it possible to describe in detail the
behaviour of each component�

The momentum and energy equations include exchange terms� that allow for the
appropriate exchanges between the gas components� To calculate these terms the
cross�collision frequencies must be estimated� The viscosity of the mixture must
also be estimated� The QGDM model includes di�usion processes but does not

��



require coe�cients of thermo�� baro� and self� di�usion� which are included in the
Navier�Stokes models� and the determination of which is a separate task�

In the present calculations we used quite simple models for the mixture viscosity
and for the frequency of cross�collisions and a rather large mass ratio of the species�
Nevertheless the QGDM model describes reasonably well the mixture behaviour in
the two problems considered� Further improvement can be expected from more
accurate expressions�

The system of the QGDM equations is written in an invariant form that allows
problems to be solved under various spatial formulations� The algorithms developed
on the basis of the QGDM model appear to be more stable than similar algorithms
based on the conventional conservation equations�

Thus� the QGDM equations are worth being studied further for future other
applications�
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�� Figure captions

Fig�� Density pro�les in a He � Xe mixture�

Fig�	 Temperature pro�les in a He � Xe mixture�

Fig�� Mean temperature and density pro�les in a He � Xe mixture�

Fig�� Di�usion velocities in a shock wave�

Fig�� Xenon concentration in a shock wave�

Fig�� Shock wave thickness of helium and xenon�

Fig�� Number densities in the Ar � He di�usion problem�

Fig�� Di�usion velocities in the Ar � He di�usion problem�
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Table �� Dimensional parameters of mixture components for variants V �� V �

V� V� V� V	

He Xe He Xe He Xe He Xe
�
kg�m�� � ��� 
��
 ��
� 
��� ���� 	��� ���� 	�
� �	��
p
Pa� ����	 ��
� ����� ���� ����� ���� ���	� ����
T 
K� ����
u
m�s� ������� ������ ������ �
����
Ma ���� ����� ���� �
��� ��
� �	��� ��		 �����

Table 	� Tabulated values for mixture components

He Xe
m
kg� ���
 � ����� ���� � �����

R
J�
kg �K�� ������ �����
M
kg�mol� 	�� ����	
d
m� ���� � ����� 
��
 � �����

� ���� ����
� ���� ���

�ref 
N�
m � s��atT � ���K ���� � ���� ���	 � ����

Table �� Non�dimensional parameters for variant V 	

Gas a 
He� Gas b 
Xe� mixture
� �� ����� �����
T �� �� ��
a �� ����
 ����

� �� 
�	�
 ����	
p ��� �����
 �����
Ma ���� �
��� ����

Table �� Calculation parameters for variant V	

grid ��� grid ����
grid step h ��
 ���

time step �t 	�� � ���� ��� � ����

number of iterations Niter ���
� ���	
�

	�



Table �� Physical properties of mixture components

He Ar
m
kg� ���
 � ����� ���� � �����

R
J�
kg �K�� ������ �����	
M
kg�mol� 	�� ������
d
m� ���� � ����� 	��� � �����

� ���� ����
� ���� ����
Pr ����� �����
�ref 
N�
m � s��at T � ���K ����
 � ���� ����� � ����

Table �� Non�dimensional parameters

Gas a 
He� Gas b 
Ar�
� �� �����
T �� ��
a �� �����
� �� �����
p ��� ����
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Figure �� Density pro�les in a He � Xe mixture
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Figure 	� Temperature pro�les in a He � Xe mixture
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Figure �� Mean temperature and density pro�les in a He � Xe mixture
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Figure �� Di�usion velocities in a shock wave
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Figure �� Xenon concentration in a shock wave
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Figure �� Shock wave thickness of helium and xenon
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Figure �� Number densities in the Ar � He di�usion problem
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Figure �� Di�usion velocities in the Ar � He di�usion problem

	�


