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Abstract—The results of numerical simulations of the three-dimensional isothermal viscous incom-
pressible flow in acavity with amoving lid are presented. The system of quasi-hydrodynamic equations
is used as a mathematical model. Computations were performed on a distributed-memory multiproces-
sor parallel computer. Parallel computation of Poisson’s equation is discussed in detail. Numerical
results obtained for the Reynolds numbers 100 and 1000 on progressively refined grids are presented.

INTRODUCTION

Numerical simulation of three-dimensional unsteady flowsisapromising area of modern computational
fluid dynamics. Multidimensional simulations of viscous incompressible flows became possible due to
progress in numerical methods for computing such flows in terms of the so-called natural (velocity—pres-
sure) variables and to the high performance of multiprocessor computers [1].

The problem of fluid motion in a cavity isawell known and demanding benchmark test used to validate
numerical techniquesfor flow simulation and evaluate their efficiency. However, publications containing the
results of multidimensional numerical computations of such flows are scarce [2-5]. At moderate Reynolds
numbers (Re < 1000), the flow is a steady laminar vortex with center near the center of the domain. The flow
inthe symmetry plane of the cavity isvirtually two-dimensional and is adequately described by the available
two-dimensional models. The corresponding velocity distributions obtained by applying different tech-
nigues are mutually consistent and agree with the results of physical experiments[6]. With increasing Rey-
nolds number, the flow structure becomes increasingly complicated: the flow becomes stratified at Re ~
2000, unsteady at higher velocities, and ultimately turbulent.

In this study, the cavity flow is simulated by using the system of quasi-hydrodynamic (QHD) equations
describing viscous incompressible flows [7, 8]. In [8], phenomenological derivation and analysis of the
QHD equations were presented and a number of exact analytical solutionsto the system were obtained. The
QHD equations were validated by computing two-dimensional viscousincompressibleflowsin[9-11]. The
QHD equations describing viscous incompressible flows have several advantages over the conventional
Navier—Stokes equations, which provide a basis for developing efficient numerical agorithms for solving
fluid-dynamics equations. Specifically, the system of QHD equations contains additional dissipative terms
ensuring regularization of numerical solutions. The QHD system is supplemented with natural boundary
conditionsfor pressure required to solve Poisson’s equation. When the QHD equations are approximated on
a gpatia grid, the values of velocity and pressure in the finite-difference equations are determined at the
same grid points. This allows one to avoid the use of the so-called staggered grids [12].

Simulation of a multidimensional flow is aformidable task that requires the use of a high-performance
computer to be accomplished. The numerical agorithm described here was implemented on a cluster dis-
tributed-memory computer with the use of data exchange based on the MPI (Message Passing Interface)
standard. Thisinterfaceis currently used in all major computing facilities containing several tensto several
thousands of processors. The problem was solved in the velocity—pressure variables. The efficiency of the
numerical algorithm islargely determined by the efficiency of computation of Poisson’s equation for pres-
sure. For thisreason, special emphasiswas placed on the implementation of the numerical method for solv-
ing Poisson’s equation in an (X, y, Z) geometry on a multiprocessor computer. A parallel version of a modi-
fied incomplete Cholesky conjugate gradient method (MICCG(0)) (see [13]) was proposed for solving the
second boundary value problem.

The agorithm developed in this study is designed to solve both time-independent and time-dependent
problems on large spatia grids. The results of computations of a cavity flow obtained on grids with up to
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4 x 10° points in space for Re = 100 and 1000 are presented. For Re = 1000, the convergence of solutions
computed on progressively refined grids is demonstrated.

1. QUASI-HYDRODYNAMIC EQUATIONS
In index notation, the QHD equations of isothermal viscous incompressible flow are written as follows:

Ou = OWw, (1.1)

au
ot

Here, summation is performed over repeated indices. The Navier—Stokes viscous stress tensor is expressed
as M\s = v(Oku' + O'U). The components of mass flux density are calculated by the formulas

+0,(u'u) + = D p = O,M¥s+ O,(u'w) + O,(w'u). (1.2)

“= p(u“-w", k=123, (1.3)
where

K i k 1k
w = trbu +=0p. (1.4)
%’l J p [%
Thefollowing notationisusedin (1.1)—(1.4): p = const > 0 isthefluid density, p isthe dynamic pressure,

u=(u', u?, ¥ isvelocity, v = n/p iskinematic viscosity, T = v/c§ isarelaxationtime, and c,issonic velocity.

The QHD equations differ from the Navier—Stokes equations by additional conservative terms with the
parameter T having the dimension of time. Ast — 0, the QHD equations reduce to the Navier—Stokes
equations. In the time-independent equations, the additional conservative terms are of order O(1%) as
T — 0. The laminar boundary-layer approximation corresponding to the QHD equations is equivalent to
the classical Prandtl equations [7, 8]. In [8], a number of exact analytical solutions to the QHD equations
were obtained. AstT — 0, these exact solutions tend to the corresponding exact solutions to the Navier—
Stokes equations. In this sense, the system of QHD equations approximates the Navier—Stokes eguations.

For incompressible flows, the convergence of numerical solutions to the QHD equations to the corre-
sponding solutions to the Navier—Stokes equations with decreasing T was demonstrated in [9-11] by using
two-dimensional convective flowsin rectangular cavities as examples.

In dimensionless form, the QHD system of equations for three-dimensional isothermal flows is written
in Cartesian coordinates as

6ux+ auerayZ _ 6WX+ Q_V\_/X+ ow,

x oy "oz T ax oy oz (1.5)
& a(ux) 6(u uy) a(u,u,) ap 2 62u ii[ﬁ_u (’)_uﬂ 19 E@u auﬂ
ot  ox oy 3z ' ox  Regg %> ReayDay ax0 " Redzlaz © oy (L6)
o o000 | O(uw) | O(uw,) | d(uw,) | A(uw)
0X oy oy 0z 0z
_u_y 0(uy uy) a(uy) o(u, uy) op_10 [Qu Q_u_ﬂ 2 0 U, 1 0 E@u auﬂ
ot ax ay 0z ay ReaxDOy ax0 " Re ay2 " Reazlaz * oyl an

N a(u,w,) N a(u,w,) N 2c?(uywy) N a(u,w,) N a(uywz)’

0X 0X oy 0z 0z
_uZ o(u.u,) a(u u,) a(uz) ap 10 E@u a_uﬂ 190 E@u auﬂ 2 0 u,
at ax ay 9z "0z  RedxUaz « ax0 " ReayDaz ayD Re /2 (1.8)
LOU) | O(Uws) | O(uyws) | O(uw,) | (Uw,)
0x ox ay oy 0z
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where

_ du, du, u,  ap
Wy = THJXax +uy6y UG T e

_ ou, . 0u,  Ouy, 9p]
w, = TBJ O +u yay +uZaz a_yD (1.9)
: au o
We TEJ yay Zaz + 04T

Here, the unknown quantities are the vel ocity components u, = Uy (X, Y, Z 1), U, = U/(X, Y, Z t), and u, = U(X,
Yy, z t) and pressure p = p(X, Y, t).
The pressure field corresponding to a known velocity field is computed by solving Poisson’s equation

°p 0° a°p _ 1Pu,  du, Ou 0 0u, ou, Ju

o oy a_Z_TE%x 3yt e T Way g

(1.10)
o du, O0u, Ous 9 Ou, 0u, Oug

_ayBJXaxJ'”yaer 2920 OZBJXGXHJVOy+ 297>

which is equivalent to (1.5) when T = const.

2. STATEMENT OF THE PROBLEM

Consider athree-dimensional isothermal flow in a cubic cavity with edge length H. The lid on the top of
the cavity is moving at a constant velocity U,. The computational domain and the coordinate system
employed are schematized in Fig. 1.

The flow is described by Egs. (1.6)—(1.10) rewritten in dimensionless form by using the relations
x=XH, y=VyH, z=72H, u, = 0U, u, = 04U, u, = 0U,,
p = ppU;, t = (IH)/U,, Re = (UyH)/v.

Equations (1.6)—1.10) are supplemented with boundary conditions. On stationary rigid surfaces, veloc-

ity is subject to the no-dlip condition
u=20.
Onthe surfacey =1, the conditions u, = U,, u, =0, and u, = 0 are set. The boundary conditionsfor pressure
follow from the impermeability condition and have the form
dap/on = 0, 2.1

where n isthe normal vector to a surface. In particular, dp/ox = 0 on the face x = 0, whereas condition (2.1)
isequivalent to dp/ox = 0 and dp/dy = 0 ontheedgex =0, y = 0. At thevertex x=0,y=0, and z= 0, it holds
that dp/ox = 0, dp/dy = 0, and dp/0z = 0.

Astheinitial condition, we set u, = u, = u,= 0. Theinitial pressure was assumed constant in the entire
flow: p=0. To eliminate ambiguity in computing pressure, itsvalue at the vertex (1, 1, 1) was held constant:
p(1,1,1)=1

The additional terms containing T were treated as regularizers. In the computations, the value of T was
varied and was chosen to ensure the accuracy and stability of the algorithm. In this study, we used T = 0.01
for Re=100 and t = 0.001 for Re = 1000. Two-dimensional computations of similar problems have shown
that this choice ensures sufficient stability and accuracy of the numerical algorithm [9, 10].

3. NUMERICAL ALGORITHM

Numerical solution of Egs. (1.6)—1.10) was based on a finite-difference method. A uniform grid was
used, with mesh size h along all coordinate axes. All quantities were calculated at grid points. The boundary
of the computational domain was set at half-integer grid points; i.e., the mesh size was equal to h/2 at the
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Fig. 1. Fig. 2.
boundary. The first derivatives were calculated as
of _ Ifivajut fijk_ fict fisy 0
ox hU 2 2 O
The second derivatives were approximated by the expressions
0,0f _1 fion = fijk fik—fi1000
&k& = H%HO.S,],k%_ki—0.5,j,k%[|1
2 ﬂ —_ }B( fi+0.5,j+0.5,k_fi+0.5,j—0.5,k k fi—0.5,j+0.5,k_fi—O.5,j—0.5,l<E|
X ay - h i+05,j,k h —R-05j,k h [k

whereki o5 k= 0.5(K+ 1)k Kjds fizosjros k=025 21 je ikt fije+ fize i+ fij21,0- Thus, the values
of functions at half-integer grid points were determined as the half-sums of their values at integer grid
points, whiletheir values at the centers of cell faces, which are required to calculate mixed derivatives, were
approximated by the arithmetic means of their values at the adjacent grid points. The derivatives df/dy,
0f/0z, (0/0y)(kof/dy), (0/0z)(kof/dz), (0/0x)(kof/0z), (d/dy)(kof/ox), (0/dy)(kof/0z), (0/0z)(kdf/dx), and
(0/02)(kof /0y) were approximated by analogous expressions.

The boundary conditionsfor vel ocity were approximated with second-order accuracy by introducing fic-
titious grid points along the outer boundaries of the domain. A pproximate boundary conditions for pressure
were obtained by extrapolating Poisson’s equation to the domain boundary. In particular, the condition
0p/0x = 0 set on the face x = 0 was approximated by the equation

—0.5p1, -1,k = 05P1, j k=1 + 3P1jk = P2jk—0.5P1, j+ 1,k —0.5P1,  k+1 = O;
the conditions dp/dx = 0 and dp/dy = 0 set on the edge with x = 0 and y = 0, by the equation
—0.25py, 1, k-1 + 1.5P1 — 0.5Pp — 0.5P1 — 0.25py 1 41 = 0.
Atthevertexx=0,y=0,z=0,
0.75p;1; — 0.25p,1; —0.25p;,;, —0.25p,;, = 0.

Analogous equations are written for other grid points located on the domain boundary. At the point with
coordinatesx =1,y =1,andz=1, we set py n,n, = 1, Where N;, N,, and N; denote the number of grid
points along the coordinates x, y, and z, respectively.

To solve the three-dimensional finite-difference equation for pressure Ay = f, we used amodified incom-
plete Cholesky conjugate gradient method (MICCG(0)) (see [13]) or its paralld version proposed in Section 4
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below. Theiterative process was terminated as soon as the condition (Ay —f, Ay —f) < 2 was satisfied, where
€ =0.00001 and | isthe number of iteration step.

The velocity field on the next time layer was determined by using an explicit scheme with time step At.
The flow was assumed to be steady if

n+1 n n+1 n n+1 n
U —ug ity —un Y. —un
max <0.001, max <0.001, max < 0.001.
ik 0 At L gk 0 At L ik 0 At D

Thisagorithm is a generalization of that proposed in [9-11] for solving the two-dimensional problem.

4. ALGORITHM OF PARALLEL IMPLEMENTATION

The parallel implementation of the solution of the finite-difference equations approximating system
(1.6)—<1.10) is based on the approach known as domain decomposition (geometric parallelism). The three-
dimensional computational domain is partitioned into p = p, % p, subdomains in the directions OX and OY
asillustrated by Fig. 2 for p, = p, = 3, and atwo-dimensional array of p = p, x p, processors is organized
into a computer. Each processor executes computations in the corresponding geometric domain.

The algorithm of parallel implementation of the solution of the explicit finite-difference schemefor sys-

n+1

tem (1.6)—(1.8) isanalogous to that described in [14]. Prior to computing the velocity components (Uy);jy

n+1 n+1

(Ui »and (u,); - onthe(n+ 1)thtimelayer, thevaluesof (u,)f., (Uy)i,. (U,) ., and pf at the bound-
ary grid pointsin the adjoining subdomains lying in planes 2 and 3 and on lines 1 are transferred. They are
required to calculate grid functions at the boundary points of subdomains along lines 4 and 5 and in planes
6 and 7. Data are transferred in packets.

The finite-difference counterpart of (1.10),
—ikYi-1 i,k = PijkYi -1k = GijkYi k-1 ¥ CijYijk— Qe kYien k=P j oY j k=i ke Yi ke = Fijk

i=1,2,...N,-1,j=1,2,...,N,-1,k=1,2, ..., N; - 1), or the equation Ay = f was solved on asingle-
processor computer by means of MICCG(0). In this method, the number of iteration stepsrequired to ensure

convergence is O(In(2/g) N ), where N, is the number of grid points along a coordinate axis and € is the

admissible relative error. The major difficulty in parallelizing MICCG(0) lies in the recursive procedure
used to calculate the inverse of the preconditioner matrix. To overcome this difficulty, the grid points are
reordered and the preconditioner matrix is reconstructed [15-20].

In the parallel version of MICCG(0), the preconditioner matrix has the form
B = (D" +A)D[D +(A)],

where the matrix A, defines an operator A; in the space of grid functions on the set of grid points:

S_aijkyi—l,j,k_bijkyi,j—1,k_gijkyi,j,k—11 (i, J, k) O oy,
%_gijkyi,j,k—ll (i, J, k) O oy,
%_aijkyi—l,j,k_gijkyi,j,k—lv (i, j, k) 0wy,
O-biYi i1k = GijkYi jk-1, (i, ], K) 0w,

(A1Y)ijk = FapYi-njk— A+ kYien k= GijkYi k-1 (1, ], K) Oy,
Ef_bijkyi,j—l,k_bi,j+1,kyi,j+1,k_gijkyi,j,k—la (i, j, k) U o,
Eraijkyi—l,j,k_anl,j,kyi+1,j,k_bijkyi,j—l,k_gijkyi,j,k—ll (i, j, k) O o,
E_bijkyi,j—l,k_bi,j+1,kyi,j+1,k_aijkyi—1,j,k_gijkyi,j,k—ll (i, j, k) O wy,
E_aijkyi—l,j,k_bijkyi,j—l,k_ai+1,j,kyi+1,j,k_bi,j+1,kyi,j+l,k_gijkyi,j,k—11 (i, j, k) O ws.

Here, wy is the set of interior grid points of all subdomains; w,, w;, W, and w, are the sets of grid points

located in planes 2, 3, 6, and 7, respectively; and w,, w,, w5, and w; are the sets of grid points located on
lines 1, 4, 5, and 8, respectively (see Fig. 2).
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The entries d;;, of the diagonal matrix D are determined by the condition Ae + GD,e = Be, where e =
(1, ..., 1)7; Dy isthe diagonal part of A; and G isthe diagonal matrix with diagonal entriescrijk defined as

E h+ &0, if (i, j,k) Dw,, for a = 1,2,3,4,5,

O =0 ., )
[€,h" otherwise;

where, >0 for0<a <5. We set
=213, &, =85 =84 =85 =103, £ = 05T
The entries d;j, of the diagonal matrix D are calculated as

1
BEijk—aijk(aijk"' Dy ekt Kidi_gjktOicejke)diogju—

E{‘ Bij(bij+ @+ q j_1k * szbi,j—l,k+ Oij-1k+)di jo1k—
E‘ Oik(Gik* v k-1t 0 jrrk-1)di j k-1, (15 ], K) 0wy,

O

EEijk_gijk(gijk ko1t ko1t 0 ko1 T 0L k- DDk

(i! J!k) lea

1
E)-Fijk_aijk(aijk"' D1kt Bi—g ek T KA1 kT Oiog k)i k—
E‘ Oijk(Gijkr v k-1 T D k-1 T 0 ko) ko1 (], K) Oy,

2
%ijk_bijk(bijk"' Qi1j-1kt Ak T KDkt O ok )i ok —

|

ik — k(@ 01 kT D ek T Oion k)i jk—

5D

|

%‘gijk(gijk'l' i jerk-1 b ko) jkens (0], K) Oy,
1 LML
dijx = (e —bijk(bij+ & j_ik+ @i okt O j-nke ) ok —

= Oijk(Dijk Ay k-1t @ 1 0 ko) o (), K) O,

Qg k(@i k0 kB kT A2 kT Givnjkr)ivrjk—

GO0 e k(B ekt Qvnjerk T A+ kT 0okt i jerke)dijork—

Etgijk(gijk"' Q.1 k-1F8 k-1 k-1, (1], K) Ows,
[Cijk— k(@i +bi_g jr okt Oion ) dio 1 j k= bijk(bije +

O]
H" szbi,j—l,k+gi,j—l,k+1)di,j—l,k_ai+1,j,k(ai+1,j,k+ Divi ekt
(i, j, k) O w,

OF &z kT Gienjke1)ivs k= Gijk(Fijk + 01+ 1.k-1)di j k-1,
K
ik = Bijk(Bij + 1ok 9o n ke D -1k~ Aje(@j +

U 1
DKyt Gicn ks ) dionjc=bijeok(Bjenk ey et

O ..
Ot i ok O+ nke )i e k— Gijk(Gijk + Q1 k-1 j k-1 (1 1K) O oy,

%ijk_aijk(aijk'i' Oi1j ke )it j k= Bik(Bijk + 91 ke i o1k —

O
D_ai+l,j,k(ai+1,j,k+ai+2,j,k+gi+1,j,k+1)di+1,j,k_bi,j+1,k(bi,j+1,k+

[l ..
ot bi,j+2,k+gi,j+l,k+1)di,j+1,k_gﬁkdi,j,k—1v (i, j, k) O wg,

Where Cijk = Cijk(l + Oijk)’

= %1 if i = Mkj+1, 1<k, <p;-1,
I [0 otherwise,

2 = 5&, if | =Mk, +1, 1<k, <p,—1,
. O otherwise,
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Table
Re N, At n t
100 22 0.002 3764 7.53
42 0.0025 3038 7.59
1000 42 0.001 29666 29.67
82 0.002 16329 32.66
162 0.002 16428 32.86

My = No/Pos K; = [1/M], Ky = [[/M,], [1] isthe integral part of |, and (k;, k,) is the index of a subdomain
O<sky<=py—1;a=1,2).

By following [19], it can be shown that the parallel version of MICCG(0) is convergent if the number of
iteration stepsis at least O(In(2/¢) N]) for any particular pair of p; and p,. When p, and p, are sufficiently

large, O(In(2/g) /N, max(,/p;., ./p,)) iteration steps are required. According to theoretical analyses and
computations, the required number of iteration steps slowly increases with the number of processors. Note
that the values of &, in (4.1) minimize the estimated number of iteration steps of the parallel version of
MICCG(0) required to solve the Dirichlet problem for Poisson’s equation.

A parallel calculation of dj is started by all processors simultaneously from lines 1 (see Fig. 2) and is
continued at the interior points of the subdomains in planes 2 and 3. The values of d;;, calculated in planes
2 and 3 and on lines 1 are transferred to adjacent processors. Then, the calculation continues on lines 4 and
5andin planes 6 and 7 and terminates on lines 8. Prior to calculating d;;, on lines 8, the values of dj;, on the
corresponding lines 4 and 5 are transferred from the adjacent processors. The order of calculation is indi-
cated by arrowsin Fig. 2. All data are transferred in packets. Both stages of the inversion of the matrix B,

(D' + Al)v? =Ay*—fand [D' + (A,)"wK= D-'wK, areimplemented in asimilar manner at each kthiteration
step. The paralldization of the remaining procedures involved in the preconditioned conjugate gradient
algorithm is organized by analogy with that applied in [18] to two-dimensional problems.

Note that the computation of pressure by solving Poisson’s equation may take 60% to 90% of the total
run time, depending on the required number of iteration steps. For this reason, the efficiency of paralleliza-
tion of the entire algorithm is determined by the efficiency of parallel solution of Poisson’s equation.

5. NUMERICAL RESULTS

Theflow in acubic cavity with amoving lid was computed for the Reynolds numbersRe= 100 and Re =
1000 on uniform spatial grids with equal number of grid points along al coordinates (N; = N, = N3 = Ny).
At Re =100, we used grids with N,, = 22 and N,, = 42. The number of grid pointsin computationswith Re =
1000 was N,, = 42, 82, or 162. The time step At used in computationsis shown in the table together with the
step number n and instant t corresponding to the onset of a steady flow. The computations were performed

Y Y Y
() (b) (©

Fig. 3.
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Fig. 4.

Fig. 5.

on an MV S-1000M computer with a single processor for the grid with N, = 22 and with four, 16, and 25
processors for the grids with N, = 42, 82, and 162, respectively.

In the case of Re = 1000 and N,, = 82, computations were performed on 50 time layers, and the run time
was 21.18, 5.69, and 4.10 min for four, 16, and 25 processors, respectively. Practical computations demon-
strate that the use of a greater number of processorsis warranted for a greater number of grid points.
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It is well known that the efficiency of an algorithm paralelized on a constant number of processors
increases with the number of grid points, whereas it decreases as the number of processorsincreases while
the number of grid points remains constant (see[14, 17]). When computations are to be performed on finer
gridswith the use of agreater number of processors, either the parallelization of MICCG(0) should be based
on different orderings of unknowns or the €elliptic equation should be solved by using a parallel version of
the regularized alternating triangular method developed for three-dimensional problemsin [21].
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0.5isthe symmetry plane of the problem. Figures 46 illustrate the flow patterns com-

The streamlines and distributions of velocity components in the three central cross sections of the cavity
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crosssectiony = 0.5. In thisflow, the z-components of velocity are small, and results computed in this study
are in good agreement with those obtained in two-dimensional computations [9] despite the complex flow
pattern in the domain. Similar results were obtained in these cross sections on grids with N, = 22 and 42.

Figures 7-9 show the streamlines computed in the same cross sections for Re = 1000 on the grid with
N, = 82. The last two demonstrate that the flow pattern becomes substantially more complicated with
increasing Re as additional sources and sinks appear in these planes. As Re increases further, the flow splits
into several vortices, which become unstable as the lid velocity is increased.

The divergent flow patterns computed at the bottom of the cavity (y = 0), itssides (z= 0 and z= 1), and
the faces located at x = 1 and x = 0 for Re = 100 and 1000 are virtually identical to those presented in [4].

Figures 10-14 show the one-dimensional distributions of velocity components computed on progres-
sively refined grids for Re = 1000. Solid, dashed, and dot-and-dash curves correspond to N, = 162, 82, and
42, respectively. They graphically illustrate the convergence of numerical solution due to grid refinement.

In particular, Figures 10 and 11 depict the distributions of the horizontal and vertical velocity compo-
nents (u,(x) at z= 0.5, x=0.5and uy) at z= 0.5, y = 0.5) in the symmetry plane of the cavity. These distri-
butions, obtained on the grid with N;, = 82, are in good agreement with those presented in [2, 4] as results
of computations performed on nonuniform grids refined toward domain boundaries with a number of grid
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points ~6 x 10% Figures 1214 illustrate the dependence
of u,, u, andu,onzat x=0.5andy = 0.5. One can seethat
the velocity components plotted as functions of z are an
order of magnitude smaller than those plotted as depend-
ing on location in the symmetry plane of the problem. As
a function of z, the velocity exhibits a stronger depen-
dence on the mesh size as compared to its variation in the
symmetry plane.

These one-dimensional graphs can be used as a basis
for a quantitative comparison of the results of three-
dimensional cavity flow computations performed with the
use of different numerical algorithms.

, Note that the numerical algorithm for solving the
! . LT Navier—Stokes equations somewhat similar to the one
0 0.25 0.50 0.75 1.00  described above was applied by Fedoseyev in [5] to com-
z  pute a number of flows, including steady cavity flows at

high Reynolds numbers up to Re =40 000. The basic idea

of the algorithm was to regularize the continuity equation

by rewriting it as (1.1), where the components of the vector
w are calculated as w = t0%p. The remaining Navier—Stokes equations were written in the standard form,
without any modification. The boundary condition dp/on = 0 was used for pressure on the rigid wall. This
approach made it possible to simulate the flows on relatively coarse grids.

Fig. 14.

CONCLUSIONS

In this paper, we present the results of numerical simulations of three-dimensional cavity flows based on
the system of QHD equations written in an Eulerian coordinate system. To solve the system of equations
obtai ned as afinite-difference approximation, we proposed an algorithm for parallel implementation, which
made it possibleto compute the problem on a cluster computer. To solve the second boundary value problem
for three-dimensional Poisson’s equation, we proposed and implemented a parallel version of MICCG(0).
The numerical results obtained are compared with those presented in other publications. The convergence
of the numerical solution on progressively refined grids is demonstrated.

The results presented here can be used in testing algorithms designed to compute three-dimensional
flows. The algorithm developed in this study can be used to perform computations of three-dimensional
unsteady flows in rectangular domains with reasonable time complexity.
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