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Abstract

 

—The results of numerical simulations of the three-dimensional isothermal viscous incom-
pressible flow in a cavity with a moving lid are presented. The system of quasi-hydrodynamic equations
is used as a mathematical model. Computations were performed on a distributed-memory multiproces-
sor parallel computer. Parallel computation of Poisson’s equation is discussed in detail. Numerical
results obtained for the Reynolds numbers 100 and 1000 on progressively refined grids are presented.

 

INTRODUCTION

Numerical simulation of three-dimensional unsteady flows is a promising area of modern computational
fluid dynamics. Multidimensional simulations of viscous incompressible flows became possible due to
progress in numerical methods for computing such flows in terms of the so-called natural (velocity–pres-
sure) variables and to the high performance of multiprocessor computers [1].

The problem of fluid motion in a cavity is a well known and demanding benchmark test used to validate
numerical techniques for flow simulation and evaluate their efficiency. However, publications containing the
results of multidimensional numerical computations of such flows are scarce [2–5]. At moderate Reynolds
numbers (Re < 1000), the flow is a steady laminar vortex with center near the center of the domain. The flow
in the symmetry plane of the cavity is virtually two-dimensional and is adequately described by the available
two-dimensional models. The corresponding velocity distributions obtained by applying different tech-
niques are mutually consistent and agree with the results of physical experiments [6]. With increasing Rey-
nolds number, the flow structure becomes increasingly complicated: the flow becomes stratified at Re ~
2000, unsteady at higher velocities, and ultimately turbulent.

In this study, the cavity flow is simulated by using the system of quasi-hydrodynamic (QHD) equations
describing viscous incompressible flows [7, 8]. In [8], phenomenological derivation and analysis of the
QHD equations were presented and a number of exact analytical solutions to the system were obtained. The
QHD equations were validated by computing two-dimensional viscous incompressible flows in [9–11]. The
QHD equations describing viscous incompressible flows have several advantages over the conventional
Navier–Stokes equations, which provide a basis for developing efficient numerical algorithms for solving
fluid-dynamics equations. Specifically, the system of QHD equations contains additional dissipative terms
ensuring regularization of numerical solutions. The QHD system is supplemented with natural boundary
conditions for pressure required to solve Poisson’s equation. When the QHD equations are approximated on
a spatial grid, the values of velocity and pressure in the finite-difference equations are determined at the
same grid points. This allows one to avoid the use of the so-called staggered grids [12].

Simulation of a multidimensional flow is a formidable task that requires the use of a high-performance
computer to be accomplished. The numerical algorithm described here was implemented on a cluster dis-
tributed-memory computer with the use of data exchange based on the MPI (Message Passing Interface)
standard. This interface is currently used in all major computing facilities containing several tens to several
thousands of processors. The problem was solved in the velocity–pressure variables. The efficiency of the
numerical algorithm is largely determined by the efficiency of computation of Poisson’s equation for pres-
sure. For this reason, special emphasis was placed on the implementation of the numerical method for solv-
ing Poisson’s equation in an (

 

x

 

, 

 

y

 

, 

 

z

 

) geometry on a multiprocessor computer. A parallel version of a modi-
fied incomplete Cholesky conjugate gradient method (MICCG(0)) (see [13]) was proposed for solving the
second boundary value problem.

The algorithm developed in this study is designed to solve both time-independent and time-dependent
problems on large spatial grids. The results of computations of a cavity flow obtained on grids with up to
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 points in space for Re = 100 and 1000 are presented. For Re = 1000, the convergence of solutions
computed on progressively refined grids is demonstrated.

1. QUASI-HYDRODYNAMIC EQUATIONS

In index notation, the QHD equations of isothermal viscous incompressible flow are written as follows:

 

(1.1)

(1.2)

 

Here, summation is performed over repeated indices. The Navier–Stokes viscous stress tensor is expressed

as 
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. The components of mass flux density are calculated by the formulas

 

(1.3)

 

where

 

(1.4)

 

The following notation is used in (1.1)–(1.4): 

 

ρ

 

 = const > 0 

 

is the fluid density, 
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 is the dynamic pressure,

 

u

 

 = (

 

u

 

1

 

, 

 

u

 

2

 

, 

 

u

 

3

 

)

 

 is velocity, 

 

ν
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/

 

ρ 

 

is kinematic viscosity, 

 

τ

 

 = 

 

ν

 

/

 

 is a relaxation time, and 

 

c

 

s

 

 is sonic velocity.

The QHD equations differ from the Navier–Stokes equations by additional conservative terms with the
parameter 

 

τ 

 

having the dimension of time. As 

 

τ 

 

 

 

0, the QHD equations reduce to the Navier–Stokes
equations. In the time-independent equations, the additional conservative terms are of order 

 

O

 

(

 

τ

 

2

 

)

 

 as

 

τ 

 

 

 

0. The laminar boundary-layer approximation corresponding to the QHD equations is equivalent to
the classical Prandtl equations [7, 8]. In [8], a number of exact analytical solutions to the QHD equations
were obtained. As 

 

τ 

 

 

 

0, these exact solutions tend to the corresponding exact solutions to the Navier–
Stokes equations. In this sense, the system of QHD equations approximates the Navier–Stokes equations.

For incompressible flows, the convergence of numerical solutions to the QHD equations to the corre-
sponding solutions to the Navier–Stokes equations with decreasing 

 

τ 

 

was demonstrated in [9–11] by using
two-dimensional convective flows in rectangular cavities as examples.

In dimensionless form, the QHD system of equations for three-dimensional isothermal flows is written
in Cartesian coordinates as

 

(1.5)
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(1.8)

∇ iu
i ∇ iw

i,=

∂uk

∂t
-------- ∇ i uiuk( ) 1

ρ
--- ∇ k p+ + ∇ iΠNS

ik ∇ i uiwk( ) ∇ i wiuk( ).+ +=

ΠNS
ik

jk ρ uk wk–( ), k 1 2 3,, ,= =

wk τ u j∇ ju
k 1

ρ
--- ∇ k p+ 

  .=

cs
2

∂ux

∂x
--------

∂uy

∂y
--------

∂yz

∂z
-------+ +

∂wx

∂x
---------

∂wy

∂y
---------

∂wz

∂z
---------,+ +=

∂ux

∂t
--------

∂ ux
2( )

∂x
-------------

∂ uxuy( )
∂y

------------------
∂ uxuz( )

∂z
------------------ ∂p

∂x
------+ + + +

2
Re
------

∂2ux

∂x2
---------- 1

Re
------ ∂

∂y
-----

∂ux

∂y
--------

∂uy

∂x
--------+ 

  1
Re
------ ∂

∂z
-----

∂ux

∂z
--------

∂uz

∂y
--------+ 

 + +=

+ 2
∂ uxwx( )

∂x
-------------------

∂ uywx( )
∂y

-------------------
∂ uxwy( )

∂y
-------------------

∂ uzwx( )
∂z

-------------------
∂ uxwz( )

∂z
-------------------,+ + + +

∂uy

∂t
--------

∂ uxuy( )
∂x

------------------
∂ uy

2( )
∂y

-------------
∂ uzuy( )

∂z
------------------ ∂p

∂y
------+ + + +

1
Re
------ ∂

∂x
------

∂ux

∂y
--------

∂uy

∂x
--------+ 

  2
Re
------

∂2uy

∂y2
---------- 1

Re
------ ∂

∂z
-----

∂uy

∂z
--------

∂uz

∂y
--------+ 

 + +=

+
∂ uxwy( )

∂x
-------------------

∂ uywx( )
∂x

------------------- 2
∂ uywy( )

∂y
-------------------

∂ uzwy( )
∂z

-------------------
∂ uywz( )

∂z
-------------------,+ + + +

∂uz

∂t
--------

∂ uxuz( )
∂x

------------------
∂ uyuz( )

∂y
------------------

∂ uz
2( )

∂z
------------- ∂p

∂z
------+ + + +

1
Re
------ ∂

∂x
------

∂ux

∂z
--------

∂uz

∂x
--------+ 

  1
Re
------ ∂

∂y
-----

∂uy

∂z
--------

∂uz

∂y
--------+ 

  2
Re
------

∂2uz

∂z2
----------+ +=

+
∂ uxwz( )

∂x
-------------------

∂ uzwx( )
∂x

-------------------
∂ uywz( )

∂y
-------------------

∂ uzwy( )
∂y

------------------- 2
∂ uzwz( )

∂z
------------------,+ + + +



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 43     No. 3      2003

NUMERICAL SIMULATION OF VISCOUS INCOMPRESSIBLE FLOW 435

where

(1.9)

Here, the unknown quantities are the velocity components ux = ux(x, y, z, t), uy = uy(x, y, z, t), and uz = uz(x,
y, z, t) and pressure p = p(x, y, t).

The pressure field corresponding to a known velocity field is computed by solving Poisson’s equation

(1.10)

which is equivalent to (1.5) when τ = const.

2. STATEMENT OF THE PROBLEM

Consider a three-dimensional isothermal flow in a cubic cavity with edge length H. The lid on the top of
the cavity is moving at a constant velocity U0. The computational domain and the coordinate system
employed are schematized in Fig. 1.

The flow is described by Eqs. (1.6)–(1.10) rewritten in dimensionless form by using the relations

Equations (1.6)–(1.10) are supplemented with boundary conditions. On stationary rigid surfaces, veloc-
ity is subject to the no-slip condition

On the surface y = 1, the conditions ux = U0, uy = 0, and uz = 0 are set. The boundary conditions for pressure
follow from the impermeability condition and have the form

(2.1)

where n is the normal vector to a surface. In particular, ∂p/∂x = 0 on the face x = 0, whereas condition (2.1)
is equivalent to ∂p/∂x = 0 and ∂p/∂y = 0 on the edge x = 0, y = 0. At the vertex x = 0, y = 0, and z = 0, it holds
that ∂p/∂x = 0, ∂p/∂y = 0, and ∂p/∂z = 0.

As the initial condition, we set ux = uy = uz = 0. The initial pressure was assumed constant in the entire
flow: p = 0. To eliminate ambiguity in computing pressure, its value at the vertex (1, 1, 1) was held constant:
p(1, 1, 1) = 1.

The additional terms containing τ were treated as regularizers. In the computations, the value of τ was
varied and was chosen to ensure the accuracy and stability of the algorithm. In this study, we used τ = 0.01
for Re = 100 and τ = 0.001 for Re = 1000. Two-dimensional computations of similar problems have shown
that this choice ensures sufficient stability and accuracy of the numerical algorithm [9, 10].

3. NUMERICAL ALGORITHM

Numerical solution of Eqs. (1.6)–(1.10) was based on a finite-difference method. A uniform grid was
used, with mesh size h along all coordinate axes. All quantities were calculated at grid points. The boundary
of the computational domain was set at half-integer grid points; i.e., the mesh size was equal to h/2 at the
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boundary. The first derivatives were calculated as

The second derivatives were approximated by the expressions

where ki ± 0.5, j, k = 0.5(ki ± 1, j, k + kijk), fi ± 0.5, j ± 0.5, k = 0.25(fi ± 1, j ± 1, k + fijk + fi ± 1, j, k + fi, j ± 1, k). Thus, the values
of functions at half-integer grid points were determined as the half-sums of their values at integer grid
points, while their values at the centers of cell faces, which are required to calculate mixed derivatives, were
approximated by the arithmetic means of their values at the adjacent grid points. The derivatives ∂f/∂y,
∂f/∂z, (∂/∂y)(k∂f/∂y), (∂/∂z)(k∂f/∂z), (∂/∂x)(k∂f/∂z), (∂/∂y)(k∂f/∂x), (∂/∂y)(k∂f/∂z), (∂/∂z)(k∂f/∂x), and
(∂/∂z)(k∂f/∂y) were approximated by analogous expressions.

The boundary conditions for velocity were approximated with second-order accuracy by introducing fic-
titious grid points along the outer boundaries of the domain. Approximate boundary conditions for pressure
were obtained by extrapolating Poisson’s equation to the domain boundary. In particular, the condition
∂p/∂x = 0 set on the face x = 0 was approximated by the equation

the conditions ∂p/∂x = 0 and ∂p/∂y = 0 set on the edge with x = 0 and y = 0, by the equation

At the vertex x = 0, y = 0, z = 0,

Analogous equations are written for other grid points located on the domain boundary. At the point with
coordinates x = 1, y = 1, and z = 1, we set  = 1, where N1, N2, and N3 denote the number of grid
points along the coordinates x, y, and z, respectively.

To solve the three-dimensional finite-difference equation for pressure Ay = f, we used a modified incom-
plete Cholesky conjugate gradient method (MICCG(0)) (see [13]) or its parallel version proposed in Section 4
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below. The iterative process was terminated as soon as the condition (Ayl – f, Ayl – f ) < ε2 was satisfied, where
ε = 0.00001 and l is the number of iteration step.

The velocity field on the next time layer was determined by using an explicit scheme with time step ∆t.
The flow was assumed to be steady if

This algorithm is a generalization of that proposed in [9–11] for solving the two-dimensional problem.

4. ALGORITHM OF PARALLEL IMPLEMENTATION

The parallel implementation of the solution of the finite-difference equations approximating system
(1.6)–(1.10) is based on the approach known as domain decomposition (geometric parallelism). The three-
dimensional computational domain is partitioned into p = p1 × p2 subdomains in the directions OX and OY
as illustrated by Fig. 2 for p1 = p2 = 3, and a two-dimensional array of p = p1 × p2 processors is organized
into a computer. Each processor executes computations in the corresponding geometric domain.

The algorithm of parallel implementation of the solution of the explicit finite-difference scheme for sys-

tem (1.6)–(1.8) is analogous to that described in [14]. Prior to computing the velocity components ,

, and  on the (n + 1)th time layer, the values of , , , and  at the bound-
ary grid points in the adjoining subdomains lying in planes 2 and 3 and on lines 1 are transferred. They are
required to calculate grid functions at the boundary points of subdomains along lines 4 and 5 and in planes
6 and 7. Data are transferred in packets.

The finite-difference counterpart of (1.10),

(i = 1, 2, …, N1 – 1, j = 1, 2, …, N2 – 1, k = 1, 2, …, N3 – 1), or the equation Ay = f was solved on a single-
processor computer by means of MICCG(0). In this method, the number of iteration steps required to ensure

convergence is O(ln(2/ε) ), where Nh is the number of grid points along a coordinate axis and ε is the
admissible relative error. The major difficulty in parallelizing MICCG(0) lies in the recursive procedure
used to calculate the inverse of the preconditioner matrix. To overcome this difficulty, the grid points are
reordered and the preconditioner matrix is reconstructed [15–20].

In the parallel version of MICCG(0), the preconditioner matrix has the form

where the matrix A1 defines an operator  in the space of grid functions on the set of grid points:

Here, ω0 is the set of interior grid points of all subdomains; ω2, ω3, ω6 , and ω7 are the sets of grid points
located in planes 2, 3, 6, and 7, respectively; and ω1, ω4, ω5 , and ω8 are the sets of grid points located on
lines 1, 4, 5, and 8, respectively (see Fig. 2).
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The entries dijk of the diagonal matrix D are determined by the condition Ae + GDAe = Be, where e =
(1, …, 1)Ú; DA is the diagonal part of A; and G is the diagonal matrix with diagonal entries σijk defined as

where ξα > 0 for 0 ≤ α ≤ 5. We set

(4.1)

The entries dijk of the diagonal matrix D are calculated as
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+ κ j
2bi j 1– k, , gi j 1– k 1+, , )di j 1– k, , ai 1+ j k, , ai 1+ j k, , bi 1+ j 1+ k, ,  ++(–+

+ ai 2+ j k, , gi 1+ j k 1+, , )di 1+ j k, , gijk gijk bi j 1+ k 1–, ,+( )di j k 1–, , , i j k, ,( )–+ ω6,∈
c̃ijk bijk bijk ai 1+ j 1– k, , gi j 1– k 1+, ,+ +( )di j 1– k, ,– aijk aijk +(–

+ κ i
1ai 1– j k, , gi 1– j k 1+, , )di 1– j k, , bi j 1+ k, , bi j 1+ k, , ai 1+ j 1+ k, ,  ++(–+

+ bi j 2+ k, , gi j 1+ k 1+, , )di j 1+ k, ,+ gijk gijk ai 1+ j k 1–, ,+( )di j k 1–, , , i j k, ,( )– ω7,∈
c̃ijk aijk aijk gi 1– j k 1+, ,+( )di 1– j k, ,– bijk bijk gi j 1– k 1+, ,+( )di j 1– k, ,  ––

– ai 1+ j k, , ai 1+ j k, , ai 2+ j k, , gi 1+ j k 1+, ,+ +( )di 1+ j k, , bi j 1+ k, , bi j 1+ k, ,  +(–

+ bi j 2+ k, , gi j 1+ k 1+, , )di j 1+ k, , gijk
2 di j k 1–, , , i j k, ,( )–+ ω8,∈
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=

c̃ijk

κ i
1 1, if i M1k1 1, 1 k1 p1 1,–≤ ≤+=

0 otherwise,



=

κ j
2 1, if j M2k2 1, 1 k2 p2 1,–≤ ≤+=

0 otherwise,



=
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Mα = Nα/pα, k1 = [i/M1], k2 = [ j/M2], [l] is the integral part of l, and (k1, k2) is the index of a subdomain
(0 ≤ kα ≤ pα – 1; α = 1, 2).

By following [19], it can be shown that the parallel version of MICCG(0) is convergent if the number of

iteration steps is at least O(ln(2/ε) ) for any particular pair of p1 and p2. When p1 and p2 are sufficiently

large, O(ln(2/ε) max( , )) iteration steps are required. According to theoretical analyses and
computations, the required number of iteration steps slowly increases with the number of processors. Note
that the values of ξα in (4.1) minimize the estimated number of iteration steps of the parallel version of
MICCG(0) required to solve the Dirichlet problem for Poisson’s equation.

A parallel calculation of dijk is started by all processors simultaneously from lines 1 (see Fig. 2) and is
continued at the interior points of the subdomains in planes 2 and 3. The values of dijk calculated in planes
2 and 3 and on lines 1 are transferred to adjacent processors. Then, the calculation continues on lines 4 and
5 and in planes 6 and 7 and terminates on lines 8. Prior to calculating dijk on lines 8, the values of dijk on the
corresponding lines 4 and 5 are transferred from the adjacent processors. The order of calculation is indi-
cated by arrows in Fig. 2. All data are transferred in packets. Both stages of the inversion of the matrix B,

(D–1 + A1)  = Ayk – f and [D–1 + (A1)Ú]wk = D–1wk, are implemented in a similar manner at each kth iteration
step. The parallelization of the remaining procedures involved in the preconditioned conjugate gradient
algorithm is organized by analogy with that applied in [18] to two-dimensional problems.

Note that the computation of pressure by solving Poisson’s equation may take 60% to 90% of the total
run time, depending on the required number of iteration steps. For this reason, the efficiency of paralleliza-
tion of the entire algorithm is determined by the efficiency of parallel solution of Poisson’s equation.

5. NUMERICAL RESULTS

The flow in a cubic cavity with a moving lid was computed for the Reynolds numbers Re = 100 and Re =
1000 on uniform spatial grids with equal number of grid points along all coordinates (N1 = N2 = N3 = Nh).
At Re = 100, we used grids with Nh = 22 and Nh = 42. The number of grid points in computations with Re =
1000 was Nh = 42, 82, or 162. The time step ∆t used in computations is shown in the table together with the
step number n and instant t corresponding to the onset of a steady flow. The computations were performed

Nh

Nh p1 p2

wk

Table

Re Nh ∆t n t

100 22 0.002 3764 7.53

42 0.0025 3038 7.59

1000 42 0.001 29666 29.67

82 0.002 16329 32.66

162 0.002 16428 32.86

Y

X

ZZZ

YY

XX

(c)(b)(a)

Fig. 3.
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on an MVS-1000M computer with a single processor for the grid with Nh = 22 and with four, 16, and 25
processors for the grids with Nh = 42, 82, and 162, respectively.

In the case of Re = 1000 and Nh = 82, computations were performed on 50 time layers, and the run time
was 21.18, 5.69, and 4.10 min for four, 16, and 25 processors, respectively. Practical computations demon-
strate that the use of a greater number of processors is warranted for a greater number of grid points.
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It is well known that the efficiency of an algorithm parallelized on a constant number of processors
increases with the number of grid points, whereas it decreases as the number of processors increases while
the number of grid points remains constant (see [14, 17]). When computations are to be performed on finer
grids with the use of a greater number of processors, either the parallelization of MICCG(0) should be based
on different orderings of unknowns or the elliptic equation should be solved by using a parallel version of
the regularized alternating triangular method developed for three-dimensional problems in [21].
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The streamlines and distributions of velocity components in the three central cross sections of the cavity
with the coordinates z = 0.5 (Fig. 3a), x = 0.5 (Fig. 3b), and y = 0.5 (Fig. 3c) are shown in subsequent figures.
The cross section z = 0.5 is the symmetry plane of the problem. Figures 4–6 illustrate the flow patterns com-
puted in these cross sections for Re = 100 on the grid with Nh = 22. Specifically, Fig. 4 depicts the velocity
components ux and uy and streamlines in the cross section z = 0.5; Fig. 5, the velocity components uy and uz

and streamlines in the cross section x = 0.5; Fig. 6, the velocity components ux and uz and streamlines in the
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cross section y = 0.5. In this flow, the z-components of velocity are small, and results computed in this study
are in good agreement with those obtained in two-dimensional computations [9] despite the complex flow
pattern in the domain. Similar results were obtained in these cross sections on grids with Nh = 22 and 42.

Figures 7–9 show the streamlines computed in the same cross sections for Re = 1000 on the grid with
Nh = 82. The last two demonstrate that the flow pattern becomes substantially more complicated with
increasing Re as additional sources and sinks appear in these planes. As Re increases further, the flow splits
into several vortices, which become unstable as the lid velocity is increased.

The divergent flow patterns computed at the bottom of the cavity (y ≈ 0), its sides (z ≈ 0 and z ≈ 1), and
the faces located at x ≈ 1 and x ≈ 0 for Re = 100 and 1000 are virtually identical to those presented in [4].

Figures 10–14 show the one-dimensional distributions of velocity components computed on progres-
sively refined grids for Re = 1000. Solid, dashed, and dot-and-dash curves correspond to Nh = 162, 82, and
42, respectively. They graphically illustrate the convergence of numerical solution due to grid refinement.

In particular, Figures 10 and 11 depict the distributions of the horizontal and vertical velocity compo-
nents (uy(x) at z = 0.5, x = 0.5 and ux(y) at z = 0.5, y = 0.5) in the symmetry plane of the cavity. These distri-
butions, obtained on the grid with Nh = 82, are in good agreement with those presented in [2, 4] as results
of computations performed on nonuniform grids refined toward domain boundaries with a number of grid
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points ~6 × 104. Figures 12–14 illustrate the dependence
of ux, uy, and uz on z at x = 0.5 and y = 0.5. One can see that
the velocity components plotted as functions of z are an
order of magnitude smaller than those plotted as depend-
ing on location in the symmetry plane of the problem. As
a function of z, the velocity exhibits a stronger depen-
dence on the mesh size as compared to its variation in the
symmetry plane.

These one-dimensional graphs can be used as a basis
for a quantitative comparison of the results of three-
dimensional cavity flow computations performed with the
use of different numerical algorithms.

Note that the numerical algorithm for solving the
Navier–Stokes equations somewhat similar to the one
described above was applied by Fedoseyev in [5] to com-
pute a number of flows, including steady cavity flows at
high Reynolds numbers up to Re = 40 000. The basic idea
of the algorithm was to regularize the continuity equation
by rewriting it as (1.1), where the components of the vector

w are calculated as wk = τ∇ kp. The remaining Navier–Stokes equations were written in the standard form,
without any modification. The boundary condition ∂p/∂n = 0 was used for pressure on the rigid wall. This
approach made it possible to simulate the flows on relatively coarse grids.

CONCLUSIONS

In this paper, we present the results of numerical simulations of three-dimensional cavity flows based on
the system of QHD equations written in an Eulerian coordinate system. To solve the system of equations
obtained as a finite-difference approximation, we proposed an algorithm for parallel implementation, which
made it possible to compute the problem on a cluster computer. To solve the second boundary value problem
for three-dimensional Poisson’s equation, we proposed and implemented a parallel version of MICCG(0).
The numerical results obtained are compared with those presented in other publications. The convergence
of the numerical solution on progressively refined grids is demonstrated.

The results presented here can be used in testing algorithms designed to compute three-dimensional
flows. The algorithm developed in this study can be used to perform computations of three-dimensional
unsteady flows in rectangular domains with reasonable time complexity.
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