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INTRODUCTION

It is known that a convective flow that arises in a
melt under the action of gravitational or thermocapil-
lary forces is damped by applying an external magnetic
field to the system. The possibility of employing this
effect for improving the properties of crystals grown
using the floating-zone method is widely studied now-
adays by means of both full-scale experiments [1, 2]
and simulations [3, 4]. In the modern state of the art,
simulation of the magnetic-field interaction with an
electrically conducting liquid is a challenge in terms of
both theory and computations.

In this study, we elaborate in more detail the quasi-
hydrodynamic (QHD) model proposed in [5] for the
description of quasi-neutral conducting liquid flows in
an external magnetic field. A simplified variant is con-
structed with an orientation to planar and axisymmetric
flows of semiconductor melts. Results of calculations
are presented to demonstrate the workability of the
numerical algorithm applied.

Since 1997, the unconventional approach to simula-
tion of gas flows based on QHD equations was repeat-
edly reported during scientific seminars held at the Fac-
ulty of Physics, Moscow State University, and chaired
by A.G. Sveshnikov, whose constant support and
encouragement largely promoted the development of
this new line of research.

1. A MATHEMATICAL BACKGROUND

For the quantities characterizing convective flows of
a quasi-neutral conducting liquid, we use the following

denotations: 
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are the strengths of the magnetic and electric fields,
respectively. As the basic mathematical model, we
employ the quasi-magnetohydrodynamic (QMHD)
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system within the Oberbeck–Boussinesq approxima-
tion, as proposed in [5]. This system can be represented
in the form
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Here,
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is the Navier–Stokes tensor of viscous stress and 
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indicates the scalar product. The electric current den-
sity can be calculated from
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In Eqs. (1)–(7), temperature expansion coefficient for
the liquid 

 

β

 

, dynamic viscosity 

 

η

 

 = 

 

ρν

 

, thermal diffu-
sivity 

 

χ

 

, and electrical conductivity 

 

σ

 

 are given positive

constants. Vector  is the free-fall acceleration, and 
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 is
the velocity of light in free space. Relaxation parameter
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, having the dimension of time, is related to kinematic
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viscosity coefficient 

 

ν

 

 and velocity of sound in the
absence of electromagnetic field 

 

c

 

sn

 

 by the expression

 

τ = ν/ . Equations (1)–(7) are written with the use of
the standard notation of tensor analysis.

2. STATEMENT OF THE PROBLEM

Let us consider axisymmetric flows of a semicon-
ductor melt in a cylindrical cavity with rigid walls. Let
us assume that Ω = {(r, z) : 0 < r < R, –A < z < A} is a

calculation area, external magnetic field  is uniform
and directed along the symmetry axis of the cylinder,

and vector  is directed in the opposite direction 
(Fig. 1).

The noninductive approximation of system of equa-
tions (1)–(7) in cylindrical coordinates (r, z) appears in
the form

(8)
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Here,

(12)

(13)

The components of Navier–Stokes viscous stress
tensor ΠNS can be calculated by formulas

System of equations (8)–(13) is represented in a
dimensionless form. It can be derived from Eqs. (1)–(7)
under the following simplifying assumptions: (i) the
induced currents are small and the electric-field effect
is negligible and (ii) the magnetic field in the liquid that

fills the cavity deviates from  only slightly.

Mass conservation law (1) is written in the form of
the Poisson equation for pressure (8).

It is convenient to measure r, z, t, ur, uz, wr, wz, p, and
T in terms of R, R, R2/ν, ν/R, ν/R, ν/R, ν/R, ρ(ν/R)2, and
Θ, respectively, where Θ is the temperature at the
point (1, 0). Dimensionless value τ is calculated by the
formula
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Fig. 1. Schematic of the calculation region (hatched) in the
problem for a cylindrical cavern.
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The Grashof (Gr), Hartmann (Ha), Prandtl (Pr), and
Reynolds (Resn) numbers are determined from the
expressions

Let the cylinder height be 2A = 2R = 2. The filling
liquid is assumed to stick to the cylinder’s upper and
lower faces. The initial conditions are presented as

(15)

The external surface is subjected to the action of sur-
face-tension forces, which depend on the temperature
regime chosen.

Let us represent the boundary conditions in the fol-
lowing forms:
(i) on the symmetry axis (r = 0, –1 < z < 1);

(16)

(ii) on the lateral wall (r = 1, –1 < z < 1);

(17)

(iii) on the lower (0 < r < 1, z = –1) and the upper (0 <
r < 1, z = 1) ends:

(18)

Here,

is the Maragoni number and σT is the surface-tension
coefficient. In order to exclude ambiguity in defining
the pressure, we use the normalization p(0, 0) = 0. For
the statement of the problem and the system of QMHD
equations for the case of a planar flow, see [6].

3. THE NUMERICAL PROCEDURE 
AND EXAMPLES OF THE CALCULATION

The initial-boundary-value problem (8)–(18) is
solved according to the explicit finite-difference
scheme of the second order described in [6, 7]. Station-
ary flows are found with the use of the iteration method
for t  ∞. Iterations are performed until
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where (uup)ij are the components of the velocity at the
upper time layer at points (i, j); ε is a given accuracy;
and Nr and Nz are the numbers of points of the differ-
ence mesh in the r and z directions, respectively. At
each time step, Poisson equation (8) is solved using the
iteration method, which was adapted to a cluster-based
multiprocessor computer system [8].

In order to ensure the stability of solution, the value
of τ (see (14)) is calculated as

where τ0 is the regularizing parameter to be matched
during the calculation. For the flows studied, the num-
ber Resn is fairly high. When L = 1 cm, ν ~ 0.01 cm2/s,
and csn ~ 105 cm/s, the corresponding Resn is of on the
order of 107. Therefore, one can consider τ = τ0 .

Numerical calculations were performed to verify the
workability of the algorithm used to solve the QMHD
equations, and the convergence of the difference solu-
tion under spatial-mesh condensation was investigated.
We also studied the influence of the magnetic field on
the structure and intensity of convective motion in the
melt by analyzing the thermocapillary convection of a
semiconductor melt in a cylindrical (see Fig. 1) and a
square-plane cavern (Fig. 2) in the absence of gravity
(Gr = 0). In this case, a convective flow is induced by
the surface tension. The calculation was carried out for
the following values of dimensionless parameters:
A = 1, Ma = 1000, Pr = 0.018, and Ha = 0, 50, 100. In
all cases, the time step was ∆t = 10–7.

In the calculation for the cylindrical cavern (Fig. 1),
the dimensionless parameter was τ = 2 × 10–7. The flow
was considered steady when ε = 10–4. A uniform mesh
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Fig. 2. Schematic of the calculation region (hatched) in the
problem for a square cavern.
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with square cells was used. The calculation was carried
out by means of an MVS-1000M multiprocessor clus-
ter computer system complying with the MPI standard.

It was found that the number of time steps to the
steady state appreciably reduces with an increase in the
Hartmann number (see Table 1). This fact is explained
by a decrease in the convection velocities in the pres-
ence of the magnetic field. As the intensity of the mag-
netic field grows, the flow becomes multilayered with
the main vortex shifted towards the free surface of
the melt.

Figure 3 show the contour lines of temperature and
the stream function. It is seen that the isotherms and
streamlines are equidistant in the vicinity of the main
vortex. Stream function ψ is calculated from the
expressions

with the normalization ψ = 0 at the boundary. The flow
obtained is symmetrical about the plane z = 0, which is
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Fig. 3. Contour lines of the (a, c, e) stream function and (b, d, f) temperature in a cylindrical cavern for Ha = (a, b) 0, (c, d) 50, and
(e, f) 100.
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due to the prescribed symmetric distribution of temper-
ature over the lateral wall and the absence of gravity
(Gr = 0). The results for Ha = 100 (see Table 1) bear evi-
dence of the convergence of the applied numerical pro-
cedure.

During simulation of the flow in a square cavity
(Fig. 2) it was assumed that the adiabaticity of the cav-
ity’s upper and lower faces yielded the boundary condi-
tions for temperature. We set T = 1 and T = 0 on the left
and the right walls, respectively. Dimensionless param-
eter τ was set equal to 2 × 10–5. The flow was considered
steady when accuracy ε = 10–3 was attained. The series
of uniform spatial meshes with the numbers of nodes
22 × 22, 42 × 42, and 82 × 82 was used. We considered
two cases related to vertically and horizontally oriented
magnetic fields. The results obtained in the steady
mode are presented in Figs. 4 and 5 and in Table 2.
Arrows indicate the directions of the magnetic field.

In the case of the vertical magnetic field, Fig. 4 dis-
plays the isotherms and the isolines of the stream func-
tion for various Hartmann numbers, as obtained with
the 42 × 42 mesh. Both the isotherms and isolines of the
stream function are equidistant. The stream function is
defined by the expressions

ux wx–
∂ψ
∂y
-------, uy wy–

∂ψ
∂x
-------.–= =

At the boundaries of the calculation area, stream
function ψ vanishes. The minimum values of ψ are
listed in Table 2. As the magnetic field increases, the
convective flow in the cavern slows down and the vor-
tex shifts to the right and upwards, thus, concentrating
near the free surface of the melt. At Ha = 100, the dis-
tortion of the isotherms caused by the melt flow is very
small.

The isotherms and streamlines are presented in
Fig. 5 in the case of the horizontal magnetic field. It is
seen that the streamlines in the upper part of the maps
and the isotherms are equidistant. The maximum abso-
lute values of the stream function appear to be higher

Table 1.  Calculation parameters for a cylindrical cavern

Ha Mesh size
Nr × Nz

The number
of steps to the 
steady state

Stream func-
tion mini-
mum ψmin

0 82 × 162 569477 –249.6

50 82 × 162 84326 –52.2

100 82 × 162 45400 –37.1

100 162 × 322 45574 –37.0
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Fig. 4. Contour lines of the (a, c, e) stream function and (b, d, f) temperature in a square cavern in the vertical magnetic field for
Ha = (a, b) 0, (c, d) 50, and (e, f) 100.
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Fig. 5. Contour lines of the (a, c) stream function and (b, d) temperature in a square cavern in the horizontal magnetic field for
Ha = (a, b) 50 and (c, d) 100. 

Table 2.  Calculation parameters for a square cavern

Ha Mesh size
Nx × Ny

The number
of steps to the 
steady state

Stream func-
tion mini-
mum ψmin

50↑ 22 × 22 437210 –23.83

0 42 × 42 1500000 –134.3

50 ↑ 42 × 42 440130 –22.18

100 ↑ 42 × 42 353705 –5.224

50 ← 42 × 42 441100 –47.785

100 ← 42 × 42 375754 –41.124

50 ↑ 82 × 82 439553 –21.88

than the corresponding values obtained for the vertical
field. The main vortex shifts noticeably towards the
upper surface, and the flow as a whole becomes multi-
layered. At Ha = 50 and 100, three and four vortices,
respectively, are observed. Similar dependences were
obtained in the calculations of flow in the cylindrical
geometry (see Fig. 3).

In study [4], a similar problem was solved using the
finite-difference algorithm based on the Navier–Stokes

equations. An implicit finite-difference scheme of the
third-order spatial accuracy was constructed in natural
variables. In order to verify the method proposed, we
calculated the melt’s stream field in the statement pre-
sented in [4]. With the 42 × 42 mesh, the minimum
value of the stream function at the center of the main
vortex was found to be ψmin = –43.5 at Ha = 50. The
result obtained in [4] was ψmin = –44.2. The general
flow structure in both cases was almost identical. This
comparison illustrates the high accuracy of the
approach applied.

CONCLUSIONS

An original mathematical model of flows in a quasi-
neutral compressible electrically conducting liquid,
referred to as a QMHD system, has been considered.
Based on this model, a simplified model of a QMHD
system in the noninductive Oberbeck–Boussinesq
approximation has been constructed and applied to
numerically simulate semiconductor-melt flows in an
external magnetostatic field. The numerical algorithm
described presents a time-explicit uniform finite-differ-
ence scheme with special regularizing parameters,
which provide for the high accuracy and stability of
numerical solution.



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS      Vol. 50      No. 2       2005

NUMERICAL SIMULATION OF ELECTRICALLY CONDUCTING LIQUID FLOWS 233

A series of simulations has been carried out to cal-
culate thermocapillary flows of a semiconductor melt in
cylindrical and square caverns at various strengths and
orientations of the external magnetic field. It has been
established that the magnetic field slows down the con-
vective liquid motion and drives it towards the free sur-
face. In the case when the magnetic-field strength is
parallel to the free surface, the flow becomes multi-
layered.

Numerical data have been compared to the results
obtained using the classical magnetohydrodynamic
system in the noninductive approximation. This has
shown that the model proposed and the numerical
method of its integration are highly efficient for calcu-
lating the conducting liquid flows with an acceptable
accuracy, even at comparatively coarse spatial meshes.
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