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SUMMARY

Numerical algorithm for calculation of non-stationary viscous gasdynamic flows is presented.
Algorithm is based on a special form of regularization in Navier-Stokes equations that
includes additional dissipative terms and forms quasi-gasdynamic equation system. Finite-different
approximations and numerical examples are presented. Copyright c© 2007 John Wiley & Sons, Ltd.
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Quasi-gasdynamic equations

This paper is devoted to a contemporary mathematical model for gas flow and to the related
numerical methods for flow simulation. Algorithm is based on a mathematical model, that
generalize the Navier-Stokes (NS) system of equations. This model is different from the NS
system in additional dissipative terms with a small parameter in τ . The new model is named
quasi-gasdynamic (QGD) system of equations. The first variant of QGD system is presented
in [1] and developed later in, e.g., [2] – [5]. QGD system has a form of conservation laws and
in common notations writes

∂ρ

∂t
+ div~jm = 0, (1)

∂(ρ~u)

∂t
+ div(~jm ⊗ ~u) + ~∇p = divΠ, (2)

∂

∂t

[

ρ
(~u2

2
+ ε

)]

+ div
[

~jm

(~u2

2
+ ε +

p

ρ

)]

+ div~q = div(Π · ~u), (3)

with the closing relations

~jm = ρ(~u − ~w), where ~w =
τ

ρ
[div(ρ~u ⊗ ~u) + ~∇p], (4)
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Π = ΠNS + τ~u ⊗
[

ρ(~u · ~∇)~u + ~∇p
]

+ τI
[

(~u · ~∇)p + γpdiv~u
]

, (5)

~q = ~qNS − τρ~u
[

(~u · ~∇)ε + p(~u · ~∇)
(1

ρ

)]

. (6)

Here ΠNS and ~qNS are the NS shear-stress tensor and heat flux vector, respectively, τ is a
small parameter, that has a dimension of time. The system (1) – (6) is completed by the state
equations for a perfect gas and expressions for coefficients of viscosity, heat conductivity and
τ coefficient.

Entropy production for QGD system is the entropy production for NS system completed
by the additional terms in τ , that are the squared left-hand sides of classical stationary Euler
equations with positive coefficients:

X = κ
( ~∇T

T

)2

+
(ΠNS : ΠNS)

2ηT
+

pτ

ρ2T

[

div(ρ~u)
]2

+

+
τ

ρT

[

ρ(~u · ~∇)~u + ~∇p
]2

+
τ

ρεT

[

ρ(~u · ~∇)ε + pdiv~u
]2

. (7)

Above equation proves a dissipative nature of the additional τ -terms.
QGD sistem differs from NS one by the second space derivative terms of an order O(τ). For

stationary flows the dissipative terms (terms in τ) in the QGD equations have the asymptotic
order of O(τ2) for τ → 0. In a boundary layer limit both QGD and NS equations reduce to
Prandtl equation system.

Terms in τ allow to construct a family of novel efficient numerical algorithms for
simulation nonstationary supersonic and subsonic gasdynamic flows. QGD algorithms inherit
mathematical properties of QGD system.

Finite-difference approximation

Finite-difference approximations of QGD system are constructed in a flux form directly using
a mass flux vector ~jm, a shear-stress tensor Π and a heat flux vector q, that correspond
to conservation laws for QGD equations (1) – (6). Invariant form of QGD system allows
to construct numerical methods for any orthogonal coordinate system for structured and
unstructured space grids.

As an example we show a finite-volume algorithm for two-dimensional Cartesian coordinate
system. In this case QGD system writes as

∂ρ

∂t
+

∂jmx

∂x
+

∂jmy

∂y
= 0, (8)

∂(ρux)

∂t
+

∂(jmxux)

∂x
+

∂(jmyux)

∂y
+

∂p

∂x
=

∂Πxx

∂x
+

∂Πyx

∂y
, (9)

∂(ρuy)

∂t
+

∂(jmxuy)

∂x
+

∂(jmyuy)

∂y
+

∂p

∂y
=

∂Πxy

∂x
+

∂Πyy

∂y
, (10)

∂E

∂t
+

∂(jmxH)

∂x
+

∂(jmyH)

∂y
+

∂qx

∂x
+

∂qy

∂y
=

=
∂

∂x
(Πxxux + Πxyuy) +

∂

∂y
(Πyxux + Πyyuy) . (11)
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Here ux and uy are the projections of the velocity ~u onto the x and y axis, respectively, E is
the total energy of a unit volume; and H is the total specific enthalpy. The last two quantities
are calculated as

E = ρ
u2

x + u2

y

2
+

p

γ − 1
, H =

(E + p)

ρ
, p = ρRT. (12)

The components of the mass flux vector ~jm are

jmx = ρ(ux − wx), jmy = ρ(uy − wy), (13)

where

wx =
τ

ρ

[

∂(ρu2

x)

∂x
+

∂(ρuxuy)

∂y
+

∂p

∂x

]

, wy =
τ

ρ

[

∂(ρuxuy)

∂x
+

∂(ρu2

y)

∂y
+

∂p

∂y

]

.

Components of Π are determined by formula, convenient for a programme realization:

Πxx = ΠNS
xx + ux w∗

x + R∗, ΠNS
xx = 2µ

∂ux

∂x
− 2

3
µ div ~u,

Πxy = ΠNS
xy + ux w∗

y, ΠNS
xy = ΠNS

yx = µ

(

∂uy

∂x
+

∂ux

∂y

)

,

Πyx = ΠNS
yx + uy w∗

x, (14)

Πyy = ΠNS
yy + uy w∗

y + R∗, ΠNS
yy = 2µ

∂uy

∂y
− 2

3
µ div ~u,

where

w∗

x = τ

[

ρux

∂ux

∂x
+ ρuy

∂ux

∂y
+

∂p

∂x

]

, w∗

y = τ

[

ρux

∂uy

∂x
+ ρuy

∂uy

∂y
+

∂p

∂y

]

, (15)

R∗ = τ

[

ux

∂p

∂x
+ uy

∂p

∂y
+ γpdiv~u

]

.

Components of the heat flux ~q are:

qx = qNS
x − ux Rq, qy = qNS

y − uy Rq, (16)

Rq = τρ

[

ux

γ − 1

∂

∂x

(

p

ρ

)

+
uy

γ − 1

∂

∂y

(

p

ρ

)

+ pux

∂

∂x

(

1

ρ

)

+ puy

∂

∂y

(

1

ρ

)]

.

Heat conductivity coefficient κ and coefficient τ are connected with a viscosity coefficient µ
by:

κ =
γR

(γ − 1)Pr
µ, τ =

1

p Sc
µ, µ = µ0

( T

T0

)ω

, (17)

where Pr is Prandtl number, Sc is Schmidt number, R ia a gas constant, γ is a specific heat
ratio.

Equation system (8) - (11) is completed by initial and boundary conditions. In contrast to
NS system, continuity equation (8) in QGD system is an equation of a second order in space.
So QGD system must be completed by an additional boundary condition. This condition for
pressure p is obtained by imposing appropriate boundary condition for mass flux vector ~jm.
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To solve the problem numerically, a grid in space and in time is introduced in a computational
domain. Gasdynamic parameters – density ρ, pressure p and velocity ~u are determined at the
nodes of the grid. The values of gasdynamic parameters at the nodes with half–integer indices
and at the cell’s centers are determined as the arithmetic mean of their values at the adjacent
nodes. A finite-difference approximation of QGD system (1) – (6) is constructed using control
volume method. The similar approximations are used for rectangular structural grids and for
unstructured three-cornered grids.

An initial-boundary value problem is solved by applying an explicit in time finite-difference
scheme. Spatial derivatives are approximated by central differences with a second-order
accuracy, and the time derivatives are approximated by forward differences with a first-order
accuracy. Stability of the numerical algorithm is provided by QGD terms in τ .

Numerical algorithm for supersonic flows

To ensure a stability of a numerical solution for supersonic flows a term proportional to a grid
step h is added to τ . Than, coefficient τ , viscosity and heat conductivity are calculated as

τ =
µ0

pSc

( T

T0

)ω

+ α
h

c
, µ = τpSc, κ =

τpSc

Pr(γ − 1)
, (18)

where c =
√

γRT is a local sound velocity, α is a numerical factor 0 ≤ α ≤ 1.
As an example of application we consider a strong discontinuity step evolution problem

in non-viscous gas without heat conductivity. It means that we solve Euler equations with
artificial dissipation that is introduced as τ = αh/c. The problem is solved in the space interval
0 ≤ x ≤ 200 for the time period 0 ≤ t ≤ 4 with Courant stability condition ∆t = βh/cmax,
where β is a factor of unity order. We take Sc = 1., Pr = 2/3 and γ = 5/3. Initial conditions
form a discontinuity at x = 100. The values to the left and to the right from the break look
as follows:

ρ(x, 0) =

{

8, x 6 100

1, x > 100
, p(x, 0) =

{

480, x 6 100

1, x > 100
, u(x, 0) = 0.

We used grid steps h = 1, 0.5, 0.25, 0.125, 0.0625 and 0.03125 with ∆t = 0.002 for the first
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Figure 1. Density distribution along x ( left - whole computational domain, right - fragments)
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three variants, and ∆t = 0.0002 for the last three ones. Convergency of the numerical results
to analytical solution with reducing h for t = 4 is seen in Fig. 1 for α = 0.5 (left figures). The
dependence of the solution from parameter α (h = 0.03125) is shown on the right figure for
α = 1., 0.1, 0.5, 0.1 and 0.02. The last value corresponds to the ”saw” solution, where numerical
instability is clearly seen. The best solution is attained for α ∼ 0.2 − 0.5, β ∼ 0.1.

Numerical algorithm for subsonic flows

In contrast to a previous case (18), here the additional stabilizing term αh/c is introduced
only in τ coefficient as

τ =
µ0

pSc

( T

T0

)ω

+ α
h

c
, µ = µ0

( T

T0

)ω

, κ =
µ

Pr(γ − 1)
.

Here a heat flux and a shear-stress tensor are not affected by a grid dissipation.
Within a framework of the QGD model simple unreflecting boundary conditions may be

applied on free subsonic boundaries. They are similar to those used for viscous incompressible
flows. For inlet boundary (in) they have a form

∂p

∂n
= αin, ~u = ~uin, ρ = ρin,

where αin ∼ 1/Re is a small constant, n is a unity vector normal to the boundary. At the outlet
boundary (out) soft boundary conditions are imposed for density and velocity, but pressure
supposed to be constant:

∂ρ

∂n
= 0,

∂~u

∂n
= 0, p = pout.

As an example a numerical simulation of a flow in a vicinity of a circular cylinder for
Mach number Ma = 0.1 and Reynolds number Re = 90 is presented. Calculations were
made for air flow (γ = 1.4, P r = 0.72, Sc = 0.746, and ω = 0.74) using unstructured grid
consisting from 2191 points. Here α = 0.1. In Fig. 2 time dependence of the velocity is
shown. Calculated Strouhal number is Sh=0.147. Rayleigh formula for incompressible flow
gives Sh = 0.212(1 − 21.2/Re) = 0.162.

In Fig.3 Karman street in the wake is plotted using isolines for ~u2 in dimensional form
(uin = 35, 31 m/sec).

Conclusions

Contemporary mathematical model for gas flow simulations, named quasi-gasdynamic
(QGD) equation system, is presented. QGD equations differ from Navier–Stokes system
in additional dissipative terms with a small parameter. Basing on QGD model a family
of new robust algorithms for non-stationary viscous flow simulations are constructed and
verified. Universality, efficiency and accuracy of these algorithms are provided by a validity of
conservation laws and entropy balance for QGD system.
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Figure 2. Time-dependence for uy in a cylinder wake.
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Figure 3. Mesh and flow picture for non-stationary flow near a cylinder, Re = 90.
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