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INTRODUCTION

The computation of unsteady compressible gas flows in the one-dimensional approximation is a visual
tool for assessing the capabilities of numerical algorithms. At present, there are numerous examples of solu-
tions to multidimensional problems that are used to compare numerical methods. However, the accuracy of
the solution in such computations is generally determined not only by the numerical algorithm used but also
by other factors, such as the structure of the spatial grid, the formulation of boundary conditions, and other
circumstances that hamper the comparison of numerical algorithms. Additionally, a detailed theoretical
analysis is available for one-dimensional inviscid gas flows, and self-similar solutions to Riemann problems
for the Euler equations are known [1, 2], which serve as a reliable reference for verifying the accuracy and
convergence of numerical solutions.

The tests discussed below can be found, for example, in [3, 4], where ten one-dimensional
unsteady inviscid gas flows were computed by ten numerical algorithms that give a fairly complete
picture of the capabilities of the finite-difference approach as applied to gas dynamics equations in
Euler variables.

In this paper, the same tests are used to analyze the capabilities of a numerical algorithm based on the
quasi-gasdynamic (QGD) equations (see, e.g., [5–7]). The QGD algorithm and related kinetically consistent
difference schemes [8] have been successfully used for the numerical simulation of a wide class of viscous
compressible gas flows. They were used to compute two- and three-dimensional unsteady flows, but one-
dimensional problems received little attention. This paper fills this gap and demonstrates the applicability
of the QGD algorithm to computations of nonstationary one-dimensional problems of various natures.

1. QUASI-GASDYNAMIC EQUATIONS AND THE NUMERICAL ALGORITHM

The quasi-gasdynamic equations for a one-dimensional plane flow in the conventional notation have the
form
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Here, 

 

E

 

 and 

 

H

 

 are the total energy of a unit of volume and the total specific enthalpy, which are calculated
by the formulas 
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, respectively. The mass flux density is calculated as

where

The component of the viscous stress tensor involved in system (1)–(3) is defined as

The heat flux 
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 is the thermal conductivity, 
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 is the adiabatic
index, Pr is the Prandtl number, 
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 is a relaxation parameter having the dimension of time, and Sc
is the Schmidt number.

For numerical convenience, system (1)–(3) is reduced in a dimensionless form by using the reference

density 

 

ρ

 

0

 

, the speed of sound 

 

c

 

0

 

 = 

 

, and the length 

 

L

 

. The nondimensionalization procedure does
not change the form of the equations.

We introduce a uniform grid in 

 

x

 

 with the mesh size 

 

h

 

 and a grid in time with the step 

 

∆

 

t

 

. All the flow
parameters—the velocity, density, and pressure—are determined at grid nodes. The fluxes are determined
at half-integer nodes. Problem (1)–(3) is approximated by a time explicit difference scheme of the form
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Table

Test ρL uL pL ρR uR pR tfin

1 1 0.75 1 0.125 0 0.1 0.2

2 1 –2 0.4 1 2 0.4 0.15

3 1 1 10–6 1 –1 10–6 1

3a 1 –19.59745 1000 1 –19.59745 0.01 0.012

4 5.99924 19.5975 460.894 5.99924 –6.19633 46.095 0.035

5 1.4 0 1 1 0 1 2

6 1.4 0.1 1 1 0.1 1 2

7 0.1261192 8.9047029 782.92899 6.591493 2.2654207 3.1544874 0.0039
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The discrete mass flux jm has the form

(7)

where the velocity addition is calculated as

(8)

The discrete expressions for Π and q are similar. The accuracy of difference scheme (4)–(8) is O(h2 + ∆t).

When the Euler equations are solved numerically on the basis of system (1)–(3), all the dissipative terms
(i.e., those with the coefficients µ, κ, and τ) are treated as artificial regularizers. The relaxation parameter,
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the viscosity, and the thermal conductivity coefficients are interrelated. In dimensionless form, they are cal-
culated by the formulas

(9)

where α is a numerical coefficient chosen, as a rule, in the range of 0.2–0.7. In most of the computations
represented below, we set Pr = 1 and Sc = 1.

Formally, the order of scheme (4)–(9) is O(αh + ∆t). The results reported below confirm that a decrease
in α within a certain range is equivalent to a spatial mesh refined α times.

Difference scheme (4)–(9) satisfies the Courant stability condition. The time step is determined by the
relation
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where β is a numerical coefficient ranging within 0.1–0.4 in most of the computations.

2. RIEMANN PROBLEMS

In this section, we consider the Riemann problems discussed in [3, 4]. They reflect the characteristic fea-
tures of unsteady gas flows that are difficult for numerical simulation. The initial data for the Riemann prob-
lems are listed in the table with the notation used in [3, 4]. Specifically, the flow parameters on the left and
right of the discontinuity are denoted by the indices L and R, respectively. The time at which the plots are
constructed is given in the table and is denoted by tfin.

The boundary conditions are the same as the corresponding initial conditions at the ends of the compu-
tational domain. In all the computations, γ = 1.4, except for Noh problem (3), in which γ = 5/3. The length
of the computational domain is equal to 1. The discontinuity is at the point 0.
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Problems 1, 2, and 4–6 were first suggested and numerically solved in [9]. In [10], problem 2 was solved
using the QGD algorithm represented as a flux-splitting scheme. The Noh problem was first considered and
numerically solved in [11].

Test 1. It is a version of the Sod problem. The resulting flow involves all the features characteristic of
supersonic flows: sonic points at the boundaries of a rarefaction wave, a contact discontinuity, and a shock
wave.

In the case of the QGD algorithm, this problem has a stable solution if 0.2 ≤ α ≤ 0.5 and β = 0.4 in for-
mulas (9) and (10), respectively. A decrease in α in the computation of regularization parameter (9) leads to
a more accurate numerical solution. Figure 1 shows the density distributions calculated on a spatial grid with
the mesh size h = 0.0025. The solid line depicts the self-similar solution. Here and in the subsequent com-
putations, the halved value of α is nearly equivalent to half a mesh size. However, the choice of α < 0.2 leads
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to computational instability, which can be eliminated by decreasing the time step, i.e., by decreasing β. Fig-
ure 2 demonstrates the convergence of the numerical solution at α = 0.2 to the self-similar solution (solid
line) as the spatial mesh size is decreased.

Test 2. The flow represents two rarefaction waves that propagate away from the center of the domain.
The difficulty in the numerical solution of this problem is that the gas density and pressure at the center
(between the diverging flows) are very low, while the internal energy ε = p/[ρ(γ – 1)] does not tend to zero.
It seems that there are no difference schemes in Eulerian variables that describe the behavior of the internal
energy in this problem with high accuracy (see, e.g., [3, 4]).

In all the computations of this problem, we used β = 0.1. An increase in the time step led to numerical
instability. Figures 3 and 4 show the gas density and internal energy as functions of the mesh size and α.
Line 6 depicts the self-similar solution. Unless otherwise stated, α = 0.5. A decrease in the regularization
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parameter or the mesh size leads to a more accurate numerical solution approaching the self-similar one.
This can be seen most clearly in the plots of the internal energy (Fig. 4). The numerical results reveal that
the velocity distribution converges rapidly as the mesh size is decreased.

Test 3. Noh problem. The flow is formed by the colliding of two hypersonic flows of a cold dense gas.
As a result, two diverging “infinitely strong” shock waves are formed between which there remains a sta-
tionary gas with a constant density and pressure. Indeed, according to the initial conditions in the table, the

speed of sound against the unperturbed background is c =  = 0.0013. The velocity of the wave
propagation is 1; i.e., the Mach number is M = uL/c = 775. It is well known that the maximum Mach number
reached in the terrestrial conditions is about ~30.

This problem was computed with α = 0.5 and β = 0.001. At the first steps, a drop in the density and a
rise in the temperature and internal energy (see Figs. 5–7, fragment) are observed at the center of the com-
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putational domain. In the entire flow region, except for the shock fronts, the velocity and the pressure gra-
dient are identically zero: u = 0 and dp/dx = 0. Therefore, the regularizing additions proportional to τ vanish
and the density and temperature perturbations are not smoothed. The only mechanism of smoothing the
numerical perturbations is heat conduction. Therefore, a good numerical solution can be obtained by
increasing the heat conduction (i.e., decreasing the Prandtl number). Figures 5–8 (fragments) display the
solution as a function of the Prandtl number for Pr =1, 0.01, and 0.001. Figure 8 shows that an increase in
the heat conduction has a negligible effect on the shape of the shock profile.

Figures 9 and 10 demonstrate that the density and velocity distributions at Pr = 0.001 converge rapidly
as the mesh size is decreased. The temperature and pressure distributions also converge rapidly to the self-
similar solution.

Thus, an increase in the artificial heat conduction in the QGD model leads to a fairly accurate solution
of the Noh problem. Note that some of the algorithms discussed in [3, 4] lead to nonphysical oscillations,
and the symmetry of the density profile is violated. In this example, as well as in the others, the QGD algo-
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rithm produces an accurate numerical solution only on fairly fine grids. However, the computational costs
associated with the degree of detail of the grid are balanced by the simplicity and computational efficiency
of this algorithm.

Test 3a. This problem deals with the gas dynamic flow generated by gas compression in a thermonuclear
target. The pressure drop pL /pR is 105, which corresponds to a temperature drop of the same order.

The regularization parameter for this problem was calculated at α = 0.7. Smaller values of α led to an
unstable solution at the contact discontinuity. The Courant number was β = 0.01 in all the computations. An
increase in the artificial heat conduction (Pr = 0.1) led to a better numerical solution. Figure 11 shows the
density as a function of the Prandtl number at h = 0.0032. The convergence of the numerical solution as the
mesh size is decreased can be seen in Figs. 12–14. Specifically, Figs. 13 and 14 display fragments of the
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internal energy and velocity distributions. The front of a strong shock wave can be clearly seen at ~0.05. In
these figures, the self-similar solution is shown by a solid line.

Test 4. This problem deals with a gas flow in the form of two diverging shock waves with a moving con-
tact discontinuity in between. The ongoing processes proceed for short times. Therefore, the numerical solu-
tion to the problem is hardly dependent on the artificial heat conduction (Prandtl number).

The problem was solved with α = 0.4 and β = 0.1. Figures 15 and 16 show the convergence of the numer-
ical solution to the self-similar density and internal energy distributions (solid line) as the mesh size is
decreased.

Test 5. The flow in this problem represents a stationary contact discontinuity. The problem was solved
at α = 0.4 and β = 0.1. Figure 17 demonstrates the effect of the viscosity and heat conduction on the numer-
ical solution. It should be stressed that the viscosity and thermal conductivity are on the order of ~h, and the
corresponding terms are treated as numerical regularizers. The values of the viscosity and thermal conduc-
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tivity are determined by Sc (see (9)). With the viscosity and heat conduction switched off (Sc = 0), the QGD
algorithm as applied to this problem is accurate in the sense that the width of the contact discontinuity com-
prise one mesh spacing. This fact demonstrates the role of QGD dissipation, which stabilizes the stationary
contact discontinuity, while the Navier–Stokes viscosity smears it. When the viscosity is switched off (τ = 0), the
solution is absolutely unstable.

Test 6. The problem deals with a slowly moving contact discontinuity. The computation was performed
at α = 0.4, β = 0.1, and Sc = 1. Figure 18 illustrates the effect of the viscosity and heat conduction at h =
0.01. It can be seen that a decrease in these coefficients (Sc = 0.1) leads to a more accurate numerical solu-
tion. However, when the Navier–Stokes artificial dissipation is totally switched off (Sc = 0), the solution
exhibits oscillations. Figure 19 shows that the numerical solution at Sc = 0.1 converges as the mesh size is
decreased.
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Test 7. The last test in the series of Riemann problems is the peak problem. This flow includes a strong
shock wave with a density drop ~30, a rarefaction wave, and a contact discontinuity between them. The
computation was performed at α= 0.3, β = 0.3, Sc = 1, and Pr = 1. The numerical solution was smeared over
the grid as α increased, while oscillations appeared at the fronts of the compression and rarefaction waves
as α decreased. A decrease in the viscosity and thermal conductivity (Sc = 0.1) or only in the thermal con-
ductivity (Pr = 1000) led to an unstable numerical solution.

For the density and velocity profiles, Figs. 20–22 show the convergence of the solution as the mesh size
is decreased. As was noted in [3, 4], all the schemes discussed there have shortcomings concerning the com-
putation of the velocity, especially in the neighborhood of a rarefaction wave (x ~ –0.32), where the density
drop is very small and comprises ~0.004 (Fig. 22). In all the plots, the self-similar solution is depicted by
line 6.
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3. INTERACTION OF TWO SHOCKS

In this section, we solve the Woodward–Collela blast wave problem or the problem of interacting of two
shocks (see [3, 4, 14]). In [15], this problem was used to test solution algorithms for the Euler equations on
adaptive meshes.

The problem deals with the interaction of two waves generated by two Riemann discontinuities. It has
no self-similar solution.

The problem was solved on the interval (–0.5, +0.5). Initially, discontinuities were specified at the points
x1 = –0.4 and x2 = 0.4. In the entire computational domain, we set ρ = 1 and u = 0. The initial pressure values
in the left (pl), middle (pm), and right (pr) domains were specified as (pl , pm, pr) = (1000, 0.01, 100). Reflec-
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tion conditions of the form

were set on the boundaries. The computations were conducted until the time tfin = 0.038. We used γ = 7/5.

The optimal computational parameters are α = 0.3, β = 0.4, Pr = 1, and Sc = 1. A decrease in α leads to
oscillations in the density profile. A decrease in the viscosity and the thermal conductivity (Sc = 0.1) also
leads to numerical instability (see Fig. 23). A decrease in the numerical thermal conductivity (Pr = 1000)
has a negligible effect on the numerical solution, since the processes involved proceed on short time inter-
vals.
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Figures 24 and 25 show the density and velocity distributions on a sequence of meshes for a regulariza-
tion parameter with α = 0.3 and 0.2. In this problem, the sensitive characteristics are the density, tempera-
ture, and internal energy distributions. The computations show that a fairly accurate density distribution is
achieved only on fine meshes, while the velocity (Fig. 25) and pressure profiles are well resolved even on
coarse meshes.

4. SHU–OSHER SHOCK ENTROPY WAVE INTERACTION PROBLEM

This problem was first suggested and numerically solved in [12]. The test shows the behavior of the dif-
ference algorithm in the case of the interaction of a smooth solution with a shock wave, namely, the inter-
action between a moving shock wave with a Mach number of 3 and a small entropy perturbation. As in the
previous case, this problem has no self-similar solution.

This test is frequently used to test the capabilities of difference algorithms. For example, it was used in
[13] to demonstrate the capabilities of high-order accurate difference schemes. In some works, this test was
used to demonstrate the properties of schemes intended for computing turbulent flows in the framework of
the LES approach (large eddy simulation). Below, the problem is considered in the statement described in
[4].

The problem is solved in the domain (–5, 5). The discontinuity is at the point x0 = 4. The initial conditions
are similar to those in the Riemann problem: the values on the left interval are (ρl, ul, pl) = (3.857143,
2.629369, 10.33333), while a smoothed density and constant velocity and pressure are specified on the right
interval: (ρr, ur, pr) = (1 + 0.2sin(5x), 0, 1), γ = 7/5. The terminal computation time is tfin = 1.8.

The optimal computational parameters are α = 0.2, β = 0.4, Pr = 1, and Sc = 1. A decrease in α leads to
oscillations in the density profile. An increase in α or the viscosity and thermal conductivity (Sc = 10) leads
to an excessively smoothed solution. A decrease in the numerical thermal conductivity (Pr = 100) nearly
does not affect the numerical solution (see Fig. 26, where h = 0.01). Figure 27 shows the convergence of the
numerical solution at α = 0.2 as the mesh size is decreased.

CONCLUSIONS

It was shown that the QGD method for computing the Euler equations can be used as a unified approach
to the simulation of a wide class of unsteady gas dynamic flows. The numerical algorithm described
includes two basic tuning parameters: the numerical coefficient α, which is involved in the regularization
parameter τ, and the coefficient β, which determines the stability of the algorithm (the Courant number). In
all the examples, α ranged from 0.2 to 0.5, while β ranged from 0.1 to 0.4. An exception was Tests 3 and
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3a, which corresponded to superstrong shock waves and ultrahigh pressure drops with α = 0.5 and 0.7 and
β = 0.001 and 0.01, respectively.

In all the examples, the numerical solution converged to a reference solution as the spatial grid was
refined.

For one-dimensional problems, the above study showed that the QGD algorithm produces solutions of
the required quality on finer grids than in the methods studied in [3, 4, 9]. Nevertheless, the simple numerical
implementation of the algorithm, its homogeneity, and the previously tested generalizations to multidimen-
sional and unstructured meshes make the QGD approach competitive with other numerical methods
intended for solving the Euler equations.

Due to the tuning parameters chosen for the QGD algorithm in the test examples with one-dimensional
flows, multidimensional viscous flows and actual flows can be computed more effectively on unstructured
grids, in which case the algorithm is difficult to tune.
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