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Abstract. The kinetically-based way of construction of the quasi-gasdynamic equations is demonstrated. The advantages of
these equations for rarefied gas flow simulations are discussed and illustrated.
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MODEL KINETIC EQUATION AND CONSTRUCTION OF QUASI-GASDYNAMIC
SYSTEM

In recent time a number of attempts were undertaken to generalize the Navier-Stokes (NS) equations in order to
extend their domain of validity when simulating moderate rarefied gas flows, see, e.g. [1] – [6]. But the constructed
mathematical models are rather complicated, and far from practical applications.

The quasi-gasdynamic (QGD) model which generalizes the possibilities of the NS system, was first obtained in
1982 based on the kinetic model consisting in a cyclic process of free-scattering – instantaneous maxwellization. The
development of this model is reflected in the RGD proceedings [7] – [12], and in other publications, e.g. [13] – [18].

The model kinetic equation to derive the QGD system can be presented as

∂ f
∂ t

+(~ξ ·~∇) f (0)− (~ξ ·~∇)τ(~ξ ·~∇) f (0) =
f (0)− f

τ
, (1)

where f = f (~x,~ξ , t) is the one-particle distribution function,f (0) is the locally-equilibrium Maxwell distribution
function,τ is the Maxwell relaxation time, that is close to the mean-free time between successive molecular collisions.
Equation (1) can formally be obtained by the BGK equation

∂ f
∂ t

+(~ξ ·~∇) f =
f (0)− f

τ
, (2)

where the distribution function in the convective term is replaced by its approximation in the form of a Taylor expansion

f = f (0)− τ(~ξ ·~∇) f (0). (3)

For stationary flows it was shown in [14] that iff satisfies Eq. (2), then it satisfies eq. (1) with the accuracy ofO(τ2)
and vice-versa. For eq.(1), an analog of the Boltzmann H-theorem was proved.

Averaging the model kinetic Eq. (1) successively with the summation invariants1,~ξ , ξ 2/2 we get the QGD system
in vector form as

∂ρ
∂ t

+div(ρ~u) = div
{

τ
[
div(ρ~u⊗~u)+~∇p

]}
, (4)

∂ (ρ~u)
∂ t +div(ρ~u⊗~u)+~∇p = div{τ [div(ρ~u⊗~u⊗~u)+ (~∇⊗ p~u)+(~∇⊗ p~u)T

]}
+~∇{τ[div(p~u)]} , (5)
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{
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System (4)–(6) corresponds to a hard-sphere gas, withγ = 5/3, Pr = 1, andp = ρRT.
Replacing5/3 by the specific heat ratioγ, we obtain

ε =
p

ρ(γ−1)
, E = ρ(

u2

2
+ ε). (7)

QUASI-GASDYNAMIC EQUATIONS IN THE FORM OF CONSERVATION LAWS

According to [14], the QGD equations (4) – (7) can be presented as a system of three partial-derivative equations
accounting for conservation of mass (equation of continuity)

∂ρ
∂ t

+∇iJ
i
m = 0, (8)

conservation of momentum

∂ (ρuk)
∂ t

+∇iJ
i
muk +∇kp = ∇iΠik, (9)

and conservation of total energy

∂E
∂ t

+∇i
Ji

m

ρ
(E + p)+∇iq

i = ∇i(Πikuk), (10)

where the mass flux vectorJi
m, the shear-stress tensorΠik, and the heat flux vectorqi are expressed as functions of

macroscopic flow quantities in the following form

Ji
m = ρui − τ

(
∇ j(ρuiu j)+∇i p

)
, (11)

Πik = Πik
NS+ τui

(
ρu j∇ ju

k +∇kp
)

+ τgik (
u j∇ j p+ γ p∇ ju

j) , (12)

qi = qi
NS− τρui

(
u j∇ jε + puj∇ j(

1
ρ

)
)

. (13)

Hereqi
NS andΠik

NS are the Navier-Stokes heat flux and shear-stress tensor, whilegik is the metric tensor.
In the above presentation we obtain that the viscosity coefficientµ, the bulk viscosityζ and the heat conductivityκ

are related through the parameterτ as

µ = τ p, ζ = τ p

(
5
3
− γ

)
, κ = τ p

γR
γ−1

. (14)

In this form the coefficientsµ andκ were derived in constructing the NS system by the Chapman-Enskog method
based on BGK model for the hard-sphere gas, see, for example [19]. The bulk viscosity coefficientζ in the form (14)
was obtained in [19] by the BGK approximation for non-monoatomic gas with rotational degrees of freedom.

As for the NS system obtained by the BGK approximation, the dissipative coefficients (14) can be generalized.
Introducing a Prandtl numberPr 6= 1 we can write the coefficient of the heat conductivity in the usual form

κ = µ
γR

γ−1
1
Pr

.

Introducing the Schmidt numberSc(close to unity in gases) we obtain

τ =
µ

pSc
.



The bulk viscosity coefficient can also be generalized. For example, by introducing the numerical factorB to adjust it
to a case of translational-rotational non-equilibrium

ζ = µB

(
5
3
− γ

)
, where B = (γ−1)

√
π
2

3
2

√
π
8

Zrot , (15)

andZrot is the coefficient of the energy exchange between translational and rotational degrees of freedom. The last one
may be estimated by Parker’s formula [20].

The QGD system is closely related to the NS system. For the QGD equations in the form (8) – (10), mass,
momentum, ungular momentum, total energy conservation laws, and the entropy theorem, are valid as for the classic
NS system.

Formally, QGD and NS systems differ from one another (terms containedτ) in the order ofO(τ). But for stationary
flows it was proved that these terms have the asymptotic order ofO(τ2) for τ → 0, or in the dimensionless form of the
equations, the order ofO(Kn2) for Kn→ 0.

The boundary layer approximation for the QGD equations leads to the classical Prandtl equation system. The same
approximation is valid for the NS system. From the definitions of the shear stress tensor (12) and heat flux vector
(13) it follows that on the unpenetrated boundaries (ui = 0) the shear-stresses and the heat fluxes for the QGD and
NS models coincide, namelyΠ = ΠNS andq = qNS. So the definitions for the friction forces and the heat flux on the
boundaries for the QGD and NS models are the same. The barometric Laplace formula is the common exact solution
for both the QGD and NS models. The other exact solution for both models is the solution of the classical Couette
problem [14].

The QGD system differs from the Burnett equations – the QGD system has additional terms in the form of the
second space derivatives, while the Burnett equations have the additional third space derivative terms.

The QGD system can be regarded as an example of a model with non-classical continuity equation, or as a "two-
velocities" gasdynamic model. The velocityui is related with the momentum transfer and frictions forces on the
boundaries, while theJi

m/ρ velocity describes the mass flow. One of the first variant of the "two-velocities" model was
presented in 1951 [1]. Recently models of this type are widely proposed and investigated, e.g. [2] – [6]. Nevertheless,
the QGD system differs significantly from the mentioned systems.

The advantages of the QGD model compared with the NS system are found for strongly non-stationary flows and
for moderate rarefied flows, where terms containedτ are not negligible.

RAREFIED FLOW SIMULATIONS

Microchannel flows.Experiments of Knudsen, carried out in 1900, show the existence of the minimum of normalized
flow-rate in long isothermal microchannels forKn∼ 1. The possibilities of describing this phenomenon is a present-
day problem for rarefied flow simulations in the framework of continuum models. The NS equation system with
Maxwell-type slip boundary conditions fails to describe this effect. Using the NS system the Knudsen effect may
be obtained by introducing artificial second order slip boundary conditions, e.g. [21]. Some results were obtained,
for example, by 13-moment regularized Grad equations by a rather difficult mathematical technique together with
enhanced boundary conditions [22]. Based on the BGK model for hard-sphere molecules the Knudsen effect has been
described by a complex mathematical procedure in [23].

The QGD system complemented by the classic Maxwell-type slip boundary conditions allows to obtain the mass-
flow rate formula describing the Knudsen effect in a simple way.

We analyze a gas flow in a plane channel of lengthL in x–direction and widthH in y–direction. The pressures at the
entrance and the exit of a channel arep1 andp2, wherep1 > p2. We look for the solution of the system (8)–(10) in the
form ux = u(y), uy = 0, p = p(x), T = T0. In this case the NS and QGD systems reduce to the same equation

dp(x)
dx

= µ
d2u(y)

dy2 , where
dp
dx

=
p2− p1

L
.

Using Maxwell velocity-slip boundary conditions for both systems we get the classical modified Poiseuille formula
for the velocity distribution

ux(y) =− 1
2µ

dp(x)
dx

[
y(H−y)+

2−σ
σ

λH
]
.



Hereσ is the coefficient of accommodation for velocity, andλ is the mean free-path calculated asλ = Aµ
√

RT/p,

whereA =
√

π/2 for Chapman formula, orA = 2(7−2ω)(5−2ω)/(15
√

2π) for Bird formula [20].
In the the QGD formulation the flow-rate is calculated using the mass flux (11)Jmx = ρ(ux−wx), as

J =
∫ H

0
Jmxdy, where wx =− τ

ρ
dp
dx

=− µ
pSc

1
ρ

dp
dx

.

So the normalized flow rate becomes

Qxy =
J

Jxy
0

=
3
√

πA

8
√

2

[Kn−1

6
+

2−σ
σ

+
2

A2Sc
Kn

]
. (16)

The first term in (16) describes the mass flow-rate for non-slip Poiseuille flow, the second one accounts for the flow-rate
increased because of velocity-slip conditions, the third one explains the flow-rate increased because of self-diffusion.
It does not depend onσ . The importance of the self-diffusion for rarefied flows in microchannels is pointed out in, e.g.
[23]. This last term has the order ofO(τ ·µ) or O(Kn2), whereKn = λ/H. For stationary flows this fact corresponds
to the difference between QGD and NS models in stationary cases. The minimum ofQxy takes place for

Knm =
A
2

√
Sc
3

.

This value does not depend fromσ . ForSc= 1, A=
√

π/2, Knm = 0.36. The results obtained together with the results
e.g.[12], [16] show, that the QGD model increases for this problem the domain of validity of the continuum approach
up toKn∼ 0.5.

Shock-wave problem.The shock-wave problem is a widely used test to examine the mathematical models and
numerical algorithms for rarefied flow simulations.

Below we compare the structure of shock wave fronts at different Mach numbers, modeled via NS and QGD
equations, with experimental results from the literature. Monoatomic argon, and diatomic nitrogen, are considered.
The molecular parameters are taken from [20]. In this modeling a finite-difference scheme with the second-order
spatial accuracy is employed for both the NS and QGD equations [11].

In Fig. 1, left, the distributions of velocity, density and temperature in an argon shock wave are shown together with
experimental data. The density thickness calculated via QGD and NS models (γ = 5/3,ω = 0.81,Sc= 0.752,Pr =
2/3) are in a good agreement with each other, and with the experimental results. But velocity and temperature
profiles in the upstream region differ – in the QGD formulation they are smoothed compared with the NS one. This
effect is similar to that found for BGK modeling. The QGD-based algorithm converges to the steady state solution
approximately 10 times faster than the NS-based algorithm due to the absence of numerical oscillations (Fig. 1, right).
In Fig. 2, left, the reciprocal shock-wave thickness compared with the experiment is shown. For these distributions
QGD and NS results are close one to each other, and both differ from the experiment by∼ 30% for Ma > 2.

Calculations for diatomic nitrogen in the NS and QGD formulations (γ = 7/5,ω = 0.74,Sc= 0.746,Pr = 14/19)
were performed taking into account the bulk viscosity in the form (15). The reciprocal shock wave thickness forB= 0
(line 1),B = 1 (line 2) andB(Zrot) (line 3) are shown in Fig. 2, right.

Here again the QGD results for the density distributions are close to the NS. Both depend strongly on the value
of the bulk viscosity. If the numerical factorB in (15) is taken according to translational-rotational exchange law, the
calculated shock-wave densities differ moderately from experimental data even forMa > 2.

Flat-plane flow and other examples.The comparison of the QGD, NS and DSMC calculations for the supersonic
air flow near a flat plane is shown in Fig. 3. Parameters of the undisturbed flow are: Mach numberMa = 2,
ρ = 0.000169kg/m3,T = 167K,u = 518m/s. The surface temperature isTw = 300K, the length of the plate is 12
cm. The slip velocity and temperature-jump conditions are imposed on the surface [18].

In this flow Kn∼ 0.01, and as it is seen from the Fig. 3, the velocity profiles calculated by the DSMC (reference
data), NS and QGD systems, are extremely close one to each other, and the DSMC velocity distributions are always
placed between the NS and the QGD lines. Comparison of the convergence rate shows that the computational time for
the QGD algorithm is less than the NS computational time by a factor of 20. The difference arises from the smaller
NS computational time step and the greater number of time steps to achieve convergence.

The QGD system was successfully used in other numerical simulations of rarefied gas flows, e.g. underexpanded jets
and jet interaction [10], supersonic flows around infinitely thin disk [17], the orbiter flow simulations and others. The
possibilities of extending the QGD model to thermal non-equilibrium flows and to binary gas mixtures are presented,
e.g., in [8] and [9].



FIGURE 1. Density, velocity and temperature distributions in argon shock-wave, Ma=9 (left). Fragment for the density distribu-
tion (right) Comparison of the QGD and NS solutions with the experiment.
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FIGURE 2. Reciprocal shock-wave thickness in argon (left) and nitrogen (right) compared with the experiment. Navier-Stokes
computations - solid lines, QGD computations - dashed lines.
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FIGURE 3. Longitudinal velocity profiles for the flow around flat plate at a distance from leading edgex = 4 cm, 7 cm and 10
cm respectively, from left to right. DSMC calculations - solid line, QGD - bold solid line, NS - dashed lines.



CONCLUSION

The quasi-gasdynamic equation system that generalizes the Navier-Stokes equations is presented together with its
kinetic origin. The advantages of this model in rarefied gas dynamics are demonstrated for microchannels, shock-
wave structure and various other flow computations.

For practical applications the form of quasi-gasdynamic equations allows to solve them with a better convergence
rate than the Navier-Stokes equations.
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