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We report the results of numerical simulation of laminar–turbulent transition in the
Taylor–Green vortex for viscous compressible gas flow basing on quasi-gas-dynamic
(QGD) equations. Here the QGD system is obtained by a temporal averaging of the
Navier–Stokes equations. The additional dissipative terms in QGD system serve to
model the effects of the unresolved subgrid scales. Comparison with direct numerical
simulation and large eddy simulation reference data demonstrates that QGD numerical
algorithm provides a uniform and adequate simulation of both laminar and turbulent
evolution of the vortex for Reynolds numbers from 100 up to 5000, including transition.

Keywords: laminar–turbulent transition; quasi-gas-dynamic equations; finite-difference
scheme; Taylor–Green compressible flow; subgrid model

1. Introduction

The evolution of the single-vortex flow, defined at the initial time as the Taylor–Green
vortex [1], may be one of the simplest flow for which a laminar–turbulent transition can be
observed numerically. This process includes two stages. At the first stage, the large-scale
vorticities break into smaller ones in laminar regime. Then, if the initial Reynolds number is
large enough, after the time point corresponding to the maximum dissipation rate, the vortex
decay leads to a turbulent energy cascade, which is interpreted as turbulence. Therefore,
the Taylor–Green flow presents the transition into isotropic turbulence. For small Reynolds
numbers, a vortex decays in a laminar regime. Taylor–Green flow has been well examined
for both laminar and turbulent flows. Due to its relative numerical simplicity, it is used as a
test case for numerical algorithms applied to turbulent flow simulations for incompressible
flows or for the flows that are close to incompressible limit in direct numerical simulation
(DNS) (e.g. [1–6]), large eddy simulation (LES) and implicit LES approaches [7–10].

Here we present the results of Taylor–Green vortex simulations based on the quasi-
gas-dynamic (QGD) equation system for viscous compressible flows. The QGD system
can be interpreted as the Navier–Stokes equation system averaged or smoothed, over some
small time or space interval. The smoothing gives rise to the strongly nonlinear additional
dissipation terms proportional to the small parameter τ . The first variants of the QGD
system have been published more than three decades ago by Chetverushkin, Elizarova
and Sheretov. From this time, the QGD system was widely used to construct numerical
algorithms for gas flow simulations. The obtained results may be seen in [11–13], citations
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herein (e.g. [14–16]), and in the recent papers. A number of theoretical results including
exact solutions of QGD system and the close relations between QGD and Navier–Stokes
systems have been established in [11]. A number of other theoretical results, including
Petrovskii parabolicity and linearised stability of equilibrium solutions of QGD system,
were analysed in e.g. [17,18].

QGD equations were created first for supersonic flow simulations, where additional
dissipative τ -terms, adaptive to the flow parameters, stabilise numerical solutions in the
shock-wave regions. Excellent capabilities of QGD algorithm in numerical simulation of
supersonic gas flows were shown in e.g. [19] for 10 well-known test cases, consisting of
different kinds of Riemann problems, including Sod, Noh and peak problems, and also
the Woodward–Collela blast and Shu–Osher problems. In all cases, the QGD numerical
solution monotonically converges to the reference data with a decreasing space step.

Later, it was noted that QGD equations open nice perspectives for the numerical sim-
ulation of turbulent flows. Here additional τ -dissipation may be regarded as an original
form of subgrid dissipation, analogous to one used in LES or implicit LES method. Nu-
merical simulations of flows in which shock waves and turbulence may coexist and interact
dynamically are challenging tasks because of the contradictory requirements to numerical
methods used to simulate turbulence and shock-wave phenomena [20].

The first encouraging QGD simulations of laminar–turbulent transition in a separated
flow over a backward-facing step in two-dimensional (2D) formulation are presented in e.g.
[21]. Several QGD calculations of this problem were repeated for 3D flows [22]. Three-
dimensional laminar–turbulent boundary-layer transition in a hypersonic flow was observed
in [23,24].

In the present paper, we examine the QGD system in calculations of the Taylor–Green
vortex decay in nitrogen at a temperature of normal conditions. The variations of Reynolds
number Re are achieved by variations of gas density and pressure. Numerical results are
compared with reference data for laminar (Re = 100 and 280) and turbulent (Re = 1600
and 5000) vortex decay regimes, calculated in DNS and LES approaches. Computations
were carried out on highly parallel computer K-100 [25].

In Section 2, the statement of the classical Taylor–Green vortex flow is presented. The
development of QGD system and its relations with Navier–Stokes equations are discussed
in Section 3. Section 4 briefly presents the numerical algorithm. Numerical results for Re =
100, 280 and 1600 are shown in Sections 5, 6 and 7. In Section 8, the symmetry properties
of the QGD algorithm together with the computational results for nearly inviscid flow decay
with Re = 5000 are collected. In Section 9, we state the further possibilities of the QGD
scheme in compressible turbulent flow simulations.

2. Problem statement and flow conditions

According to [4], we examine a Taylor–Green vortex flow in a periodic square box as −πL
≤ x, y, z ≤ πL in Cartesian coordinates. In our case, πL = 0.016 m. Working gas is nitrogen
that is described by its density ρ(x, y, z, t), velocity with components ux(x, y, z, t), uy(x, y,
z, t), uz(x, y, z, t) and pressure p(x, y, z, t). We also denote the velocity components as ui.
The same notation is used for all vector and tensor components below, if necessary.

The initial flow field for the Taylor–Green vortex is given by [1–7]

ux = U0 sin(x/L) cos(y/L) cos(z/L),

uy = −U0 cos(x/L) sin(y/L) cos(z/L),
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uz = 0,

p = p0 + ρ0U
2
0

16
(cos(2x/L) + cos(2y/L))(cos(2z/L) + 2). (1)

The initial temperature distribution is uniform in space: T = T0 = 273 K. The initial density
is governed by the equation of state for a perfect gas:

ρ = p/(RT ). (2)

The gas constant for nitrogen is R = 297 J kg−1K−1. Initial flow parameters ρ0, p0 and T0

are also connected by the state equation p0 = ρ0RT0.
We introduce a Mach number for the initial conditions

Ma = U0/cs0 = 0.1, (3)

where the speed of sound for nitrogen corresponding to the initial temperature is cs0 =√
γRT0 = 337 m/s, and the specific heat ratio is γ = 7/5 [26]. The Mach number used in

calculations is small and the solution obtained for the velocity and pressure fields must be
very close to those obtained assuming an incompressible flow.

We introduce the Reynolds number as

Re = ρ0U0L/μ0, (4)

where μ0 = 1.67 × 10−5 kg/(m s) is the dynamic shear viscosity for nitrogen at temperature
T0 = 273 K [26].

We calculate the flows with Re = 100, 280 and 1600 to compare the results with the
reference data from [1–6], and Re = 5000 that is compared with data from [2] and [8]. The
results of inviscid flow calculations of Taylor–Green vortex flow in LES approximation are
presented in e.g. [7], using four high-order numerical methods, namely Jameson multi-stage
scheme, Roe-TVD-MUSCL scheme and essentially non-oscillatory (ENO) schemes.

All our calculations are performed in dimensional values. In order to respect the desir-
able Re and Ma numbers, we define the initial values in the next order: at first, we define the
initial velocity U0 using Equation (3), density ρ0 with Equation (4), pressure p0 = ρ0RT0,
and then we define initial velocity and pressure distributions by Equation (1) and initial
density field by Equation (2). The different values of the Reynolds number are obtained by
adjusting the flow density and pressure for reference temperature.

The boundary conditions are taken as periodic in the three directions, which means that
we assume a non-limited space containing a system of similar Taylor–Green vortices.

Some preliminary computational results for Re = 100, 280 and 1600 have been pub-
lished in [27].

3. Quasi-gas-dynamic equation system

QGD equations are closely related to Navier–Stokes equations for viscous compressible
gas flows and can be regarded as their generalisation [11–13]. It was shown [28] that QGD
equations can be obtained by averaging Navier–Stokes equations over a small time interval,
which results in additional smoothing or regularisation of the equation system. Below we
present a brief description of this way to obtain QGD system basing on Navier–Stokes
equations.
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710 I.A. Shirokov et al.

The viscous compressible Navier–Stokes equations [29,30] in the absence of external
forces and heat sources can be presented in the following form:

∂ρ

∂t
+ ∂

∂xi

Ji = 0, (5)

∂ρui

∂t
+ ∂

∂xj

Jjui + ∂

∂xi

p = ∂

∂xj

�NSji , (6)

∂

∂t
ρ

(
u2

2
+ ε

)
+ ∂

∂xi

Ji

(
u2

2
+ ε + p

ρ

)
+ ∂

∂xi

qNSi = ∂

∂xi

�NSij uj . (7)

Here,

Ji = ρui (8)

denotes a mass flux vector, and u2 = u2
x + u2

y + u2
z . System (5)–(7) is supplemented with

the equation of state (2) for the perfect gas and with the following expressions for the
viscous stress tensor and the heat flux vector:

�NSij = μ

(
∂

∂xi

uj + ∂

∂xj

ui − 2

3
δij

∂

∂xk

uk

)
+ ξδij

∂

∂xk

uk, qNSi = −k
∂

∂xi

T , (9)

where the indices i and j denote coordinates x, y and z. The unknown values in system (5)–
(7) are the density ρ, the velocity components ui and the internal energy ε. The coefficients
of the dynamic viscosity μ, volume viscosity ξ and the thermal conductivity k are positive,
and δij is the Kronecker delta.

To obtain the QGD equation system, let us average the equation system (5)–(7) over
a small time interval �t. We assume that �t is sufficiently small and does not exceed the
characteristic hydrodynamic time-space scale of the problem under consideration. There-
fore, the equation system obtained will imply only averaged gas-dynamic parameters, and
will not depend on the details of the unresolved scales of the order of ∼�t and ∼�tcs.

We calculate the time integrals accordingly with [28] in approximate form as

1

�t

∫ t+�t

t

f (xi, t
′)dt ′ ≈ f (xi, t) + τ

∂f (xi, t)

∂t
, (10)

where f denotes the averaged gas-dynamic parameters ρ, p, ε and ui. The smoothing
parameter τ is related to interval of time averaging (0 ≤ τ ≤ �t) and can be considered as
a small free parameter that will be defined later.

Introducing the relation (10) in Equations (5)–(7), we restrict our consideration only
by the first-order terms and neglect the terms of the order O(τ 2), O(τμ) and O(τk). We
omit terms of the form ( ∂

∂t
τ ∂

∂t
) while computing the time derivatives, supposing that they

are small compared with the first-order time derivatives. So we find that averaged system
becomes

∂ρ

∂t
+ ∂

∂xi

(
ρui + τ

∂

∂t
ρui

)
= 0, (11)

∂ρui

∂t
+ ∂

∂xj

[(
ρuj+τ

∂

∂t
ρuj

)
ui+τρuj

∂

∂t
ui

]
+ ∂

∂xi

(
p + τ

∂

∂t
p

)
= ∂

∂xj

�NSji , (12)
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Journal of Turbulence 711

∂

∂t
ρ

(
u2

2
+ ε

)
+ ∂

∂xi

[(
ρui + τ

∂

∂t
ρui

)(
u2

2
+ ε + p

ρ

)

+ τρui

(
uj

∂

∂t
uj + ∂ε

∂t
+ p

∂

∂t

1

ρ
+ 1

ρ

∂p

∂t

)]
+ ∂

∂xi

qNSi = ∂

∂xi

�NSij uj . (13)

The next step consists of the calculation of the τ -terms with time derivatives and
transformation of the obtained system to the flux form similar to the Navier–Stokes system
(5)–(7).

Continuity Equation (11) is transformed as follows. We find the time derivative from
the Euler momentum equation as

∂ρui

∂t
= − ∂

∂xj

ρujui − ∂

∂xi

p. (14)

Substituting this expression into Equation (11) yields

∂ρ

∂t
+ ∂

∂xi

[
ρui − τ

(
∂

∂xj

ρujui + ∂

∂xi

p

)]
= 0. (15)

Introducing the notation

wi = τ

ρ

(
∂

∂xj

ρuiuj + ∂

∂xi

p

)
, Ji = ρ(ui − wi), (16)

we obtain the following time-averaged, or smoothed, continuity equation:

∂ρ

∂t
+ ∂

∂xi

Ji = 0, (17)

where Ji denotes the mass flux vector that differs from the Navier–Stokes mass flux vector
ρui (8) by the strongly nonlinear values proportional to the small parameter τ .

To transform the momentum and energy equations, we use the Euler equations and
differential identities following from them. For an ideal polytropic gas with the equations
of state,

p = ρRT, ε = RT

γ − 1
, (18)

these identities can be written as

∂

∂t

1

ρ
+ ui

∂

∂xi

1

ρ
− 1

ρ

∂

∂xi

ui = 0, (19)

∂

∂t
ui + uj

∂

∂xj

ui + 1

ρ

∂

∂xi

p = 0, (20)

∂

∂t
ε + ui

∂

∂xi

ε + p

ρ

∂

∂xi

ui = 0, (21)

∂

∂t
p + ui

∂

∂xi

p + γp
∂

∂xi

ui = 0. (22)

D
ow

nl
oa

de
d 

by
 [

T
at

ia
na

 E
liz

ar
ov

a]
 a

t 0
5:

16
 0

5 
A

ug
us

t 2
01

4 



712 I.A. Shirokov et al.

The analogous transformation of the momentum equation (12) is done in the next form.
Using Equation (16) and identities (20) and (22), we obtain

∂ρui

∂t
+ ∂

∂xj

[
(ρuj − ρwj )ui + τρuj

(
− uk

∂

∂xk

ui − 1

ρ

∂

∂xi

p

)]

+ ∂

∂xi

[
p + τ

(
− uk

∂

∂xk

p − γp
∂

∂xk

uk

)]
= ∂

∂xj

�NSji . (23)

Thus, the smoothed momentum equation is written as

∂ρui

∂t
+ ∂

∂xj

Jjui + ∂

∂xi

p = ∂

∂xj

�ji, (24)

where the viscous stress tensor is given by

�ji = �NSji + τρuj

(
uk

∂

∂xk

ui + 1

ρ

∂

∂xi

p

)
+ τδji

(
uk

∂

∂xk

p + γp
∂

∂xk

uk

)
. (25)

To transform the total energy balance equation (13), we use all four Euler identities
(19)–(22). As a result, we get

∂

∂t
ρ

(
u2

2
+ ε

)
+ ∂

∂xi

Ji

(
u2

2
+ ε + p

ρ

)
+ ∂

∂xi

τρuiuj

(
− uk

∂

∂xk

uj − 1

ρ

∂p

∂xj

)

− ∂

∂xi

τρui

1

ρ

(
uk

∂

∂xk

p + γp
∂

∂xj

uj

)
+ ∂

∂xi

τρui

(
− uk

∂

∂xk

ε − p

ρ

∂

∂xk

uk

)

+ ∂

∂xi

τρuip

(
− uk

∂

∂xk

1

ρ
+ 1

ρ

∂

∂xk

uk

)
+ ∂

∂xi

qNSi = ∂

∂xi

�NSij uj . (26)

Combining like terms gives the following time-averaged total energy equation:

∂

∂t
ρ

(
u2

2
+ ε

)
+ ∂

∂xi

Ji

(
u2

2
+ ε + p

ρ

)
+ ∂

∂xi

qi = ∂

∂xi

�ijuj . (27)

where the heat flux is given by

qi = qNSi − τρui

(
uk

∂

∂xk

ε + puj

∂

∂xj

1

ρ

)
. (28)

The time-averaged angular momentum balance equation is derived in a similar fashion
and coincides with the equation obtained in [11] as an exact consequence of the QGD
momentum balance equation (24). Therefore, the QGD equation system presented here
does not disturb the angular moment balance of the gas-dynamic system.
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For the QGD system, the entropy balance equation with non-negative dissipation func-
tion � was obtained:

� = �NS : �NS

2μ
+ pτ

ρ2

(
∂

∂xi

ρui

)2

+ τρ

(
uk

∂

∂xk

ui + 1

ρ

∂

∂xi

p

)2

+ τρ

ε

(
ui

∂

∂xi

ε + p

ρ

∂

∂xi

ui

)2

. (29)

The τ -terms bring an additional non-negative entropy production and thus they have a
dissipative character [11,13].

The additional strongly nonlinear τ -terms that appear due to averaging are second-order
space derivatives in factor of a small parameter τ that has the dimension of time. For τ

= 0, the QGD equation system reduces to the classical system (5)–(7). The influence of
additional τ -terms is different for the quasi-stationary and strong non-stationary flows.
According to [11,13], for slowly variable laminar flows, τ -terms have the order O(τ 2) and
influence only the accuracy of the solution. However, for rapidly variable turbulent flows,
τ -terms have the order of O(τ ) and can bring a considerable contribution to the solution.

In the gas flow calculations, τ -terms work as efficient adaptive dissipation, which
improve the stability of the numerical solution in the regions with strong variations of
parameters, as shock wave and boundary regions, and at the same time, vanish in the
regions with smooth solution.

At the same time, τ -terms can be regarded as a form of subgrid dissipation, which
smooth the unresolved time-space scales. The QGD τ -terms are more complex and differ
from the tradition approach to calculate turbulent flows. In LES and RANS approaches,
viscosity coefficient μ is replaced by μ + μt, where μt is the turbulent viscosity. The last
one can be estimated by Boussinesq–Prandtl hypothesis [29] as μt ∼ ρu′l with u′ as the
velocity fluctuations and l as the turbulent mixing length. This form of turbulent viscosity
is included in τ terms, added to �NS (25), for example,

�yx ∼ μ
∂ux

∂y
+ τuyρuy

∂ux

∂y
= (μ + μt )

∂ux

∂y
,

where μt = τu2
yρ = ρuyl, with l = τuy.

Compared with RANS or LES models, dissipative τ -terms appear not only in the
momentum and energy equations, but also in the continuity equation. This simulates the
turbulent mass diffusion, which is inherent to turbulent mixing. In this sense, τ -smoothing
correlates with implicit LES methods (e.g. [9,10]), where cell-averaging discretisation of
the flow variables acts as an implicit filter for all equations of the system [31].

Near a wall, both pressure gradient and velocity components are small and all τ -terms
vanish. In the limiting case of Re → ∞ QGD system as the Navier–Stokes one takes the
form of Prandtl equations.

The generalisation of the QGD system for the flows with external forces and heat
sources was done in [11,13]. Flows with a generalised equation of state may be described
by QGD equations in the form of [32]. QGD algorithm for shallow-water flows is presented
in e.g. [33].
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714 I.A. Shirokov et al.

4. Governing equations and numerical algorithm

Numerical algorithm is based on the QGD equations presented in the flux form:

∂ρ

∂t
+ ∂

∂xα

Jα = 0 (30)

∂ρuα

∂t
+ ∂

∂xβ

Jβuα + ∂

∂xα

p = ∂

∂xβ

�βα (31)

∂

∂t
E + ∂

∂xα

JαH + ∂

∂xα

qα = ∂

∂xα

�αβuβ (32)

for ideal polytropic gas (18) with closing relations (16), (25) and (28). Here E and H are
the total energy per unit volume and total specific enthalpy, respectively,

E = ρ

(
u2

2
+ ε

)
, H =

(
u2

2
+ ε + p

ρ

)
= E + p

ρ
.

The heat conductivity coefficient is given by

k = μγR

Pr(γ − 1)
, (33)

where Pr is the Prandtl number. In our consideration, Pr = 0.71 according to [4].
The gas viscosity coefficient μ, appearing in expressions for �NS and qNS, is defined

by a temperature power-law [26]:

μ = μ0

(
T

T0

)ω

, (34)

where ω-value is related to the intermolecular potential for gas molecules. For nitrogen,
ω = 0.74 [26]. Here the bulk, or volume, viscosity coefficient is supposed to be zero: ξ =
0 according to [4].

In the present applications, we define the relaxation parameter, appearing in formulas
(9)–(12), as

τ = α
h

cs

, (35)

where cs = √
γRT is the sound velocity estimated locally and h is the grid resolution. In

a low-supersonic flow, the value of τ defines the time required for a perturbation to travel
across a grid cell. The τ -terms account for subgrid dissipation that averages the pulsations
of gas-dynamic values over the time and grid steps. Thus, coefficient α is a tuning parameter
that defines the level of subgrid dissipation. According to numerical practice, it ranges in
the interval of 0 < α ≤ 1. The coefficient α is the only tuning parameter of the QGD subgrid
model.

Note that if we replace the step size h by the value of a mean free path λ, and set α =
1, then τ -value (35) is equal to Maxwellian relaxation time τM = μ/p, obtained in kinetic
theory for ideal polytropic gas (e.g. [26]). Calculations of the rarefied flows by QGD system
with τ = τM were done in e.g. [11,13,14].
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The reference value of a mean free path [26] using the initial flow conditions has the
following form:

λ0 = μ0/(ρ0

√
2πRT0�/4),

where

� = 30/((7 − 2ω)(5 − 2ω)).

For all the presented calculations, including the smallest Reynolds number, the condition
λ0 <<h is satisfied, where h is the grid resolution or computational space step. Really, for
Re = 100 estimation gives λ0 = 6.2 × 10−6 m, while in our calculations the smallest space
step h = 2.5 · 10−4 m.

For the numerical simulation of the initial-boundary problems (30)–(32) with initial
condition (1) in the computation domain −πL ≤ x, y, z ≤ πL, we introduce a uniform grid
over space and time �x, y, z, t = ωx ⊗ ωy ⊗ ωz ⊗ ωt, with ωx = (xi, i = 0, . . . N + 1, xi =
hi), ωy = (yj, j = 0, . . . N + 1, yj = hj), ωz = (zk, k = 0, . . . N + 1, zk = hk), ωt = (td, d
= 0, . . . Nt, td = �td). The number of time steps Nt is not determined in advance.

For all gas-dynamic values, depending on space coordinates and time, we introduce
grid functions. For example, for density it stands as ρ(i, j, k, d) = ρ(xi, yj, zk, td). All other
gas-dynamic grid values have a similar form. The dimensions of the grid functions are
those of physical values.

We use the explicit-in-time finite-volume scheme with the approximation of all space
derivatives by second-order central differences as

∂f

∂x

∣∣∣∣
i,j,k

= fi+1/2,j,k − fi−1/2,j,k

h
.

The gas-dynamic values with half integers are calculated with simple averaging by the
adjacent cells, for example,

ρi±1/2,j,k = 0.5(ρi,j,k + ρi±1,j,k). (36)

The time differences are approximated with first-order accuracy. The numerical algo-
rithm is the same as in [11,13,21,23,34]. Explicit-time calculations directly describe the time
evolution of the gas-dynamic flow. The convenient form of QGD system for finite-different
approximation and programme coding is presented in [11,13].

The discrete form of Equation (30) can be written as

ρd+1
i,j,k = ρi,j,k − �t

h

(
J x

i+1/2,j,k − J x
i−1/2,j,k

)
− �t

h

(
J

y
i,j+1/2,k − J

y
i,j−1/2,k

)

− �t

h

(
J z

i,j,k+1/2 − J z
i,j,k−1/2

)
(37)

Here, in the right-hand side of the equations, the index d is omitted and the coordinate
indexes x, y, z are placed as x, y, z. These relations mean that the change of the quantities
inside a cell is defined by the fluxes through its boundaries. Half integer denotes the flux
values on the interfaces between the cells.
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For example, the x-component of the mass flux is approximated as

J x
i+1/2,j,k = ρi+1/2,j,k

(
ux

i+1/2,j,k − wx
i+1/2,j,k

)
, (38)

where the space derivatives are calculated in a point i + 1/2, j, k as

wx
i+1/2,j,k = τ

ρ

(
∂ρu2

x

∂x
+ ∂ρuxuy

∂y
+ ∂ρuxuz

∂z
+ ∂p

∂x

)∣∣∣∣
i+1/2,j,k

. (39)

It means that to compute the unknown ρd+1
ijk , the information from the adjacent points

(i ± 1, j, k), (i, j ± 1, k) and (i, j, k ± 1) is required. The stencil of the scheme is a 3D cube
that includes 27 space points.

Finite-volume analogues of Equations (31) and (32) are obtained by the same procedure.
The numerical algorithm is realised in the next way: at first, basing on the gas-dynamic

values in the points (i, j, k) and (i ± 1, j ± 1, k ± 1) at the time step d, we determine
the necessary gas-dynamic values in the half-integer points as e.g. Equation (38). Then,
we calculate the fluxes (16, 25, 28) in the half-integer space points, then we calculate the
values ρ, ρux, ρux, ρux and E in the next time step by the equations similar to Equation
(37). The last step is the calculation of velocity components ui = ρui/ρ and gas-dynamic
temperature T using the state equation.

The periodic boundary conditions are realised by introducing shadow cells adjacent to
a physical boundary. The gas-dynamic values at these cells are recalculated in each time
layer. The boundary of the computational domain lies in the half-integer points (e.g.[13]).

The time step is determined by the Courant condition [13] as

�t = β
h

cs0
, (40)

were β is the Courant number. The space step h is employed in the expression of relax-
ation parameter τ (14), and Courant number is directly related to the α-coefficient. In all
calculations below, β = 0.1.

The QGD numerical scheme for non-uniform space grids could be constructed by
replacing h for hxi, hyj and hzk. Explicit QGD schemes for non-structured triangle grids are
constructed and used in 2D calculations in [12,13,35].

As in [22,34], the calculations are performed in dimensional variables. For comparison
with the reference data, we present the results of the calculations in dimensionless form
using the reference parameters L, U0 and ρ0. Therefore, the non-dimensional time is
tnd = t/t0, where t0 = L/U0 = 1.512 × 10−4 s, and the non-dimensional value of kinetic
energy per unit volume is End = E/(ρ0U

2
0 ).

The presented numerical algorithm is simple because of its explicit form and restricted
space stencil. Only central-difference approximations are used and additional monotonisa-
tion or limiting functions are not required. Parallel realisation of the numerical method is
natural and implies the domain-decomposition technique.

Results have been obtained on K-100 computer system [25] which was constructed
in Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow,
Russia, in 2010. A parallel variant of the numerical algorithm was developed based on
a decomposition of the computational domain by planes x = const. The message passing
interface (MPI) was used. Our code is portable between multiprocessor systems that support
the C language and MPI standard.
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Journal of Turbulence 717

Figure 1. Evolution of iso-surfaces of z-component of vorticity for Re = 100, t = 0.0, and t = 5.0.

For example, calculations on the grid with 1283 points up to non-dimensional time
t = 22.5 with 32 processing nodes of K-100 (Intel Xeon X5670) take about 17 hours of the
computing time.

5. Computational results for Re = 100

Figure 1 illustrates the evolution of iso-surfaces of z-component of the dimensionless
vorticity:

Vz = ∂uy

∂x
− ∂ux

∂y
. (41)

Here Re = 100, and yellow colour corresponds to Vz = 0.2, blue colour corresponds to
Vz = −0.2. Iso-surfaces are presented for the sequence of dimensionless time moments
t = 0, 5, 10, 15, 20 and 22.5. The computational parameters are as follows: the number of
the grid points is 1283, the space step is h = 2.5 × 10−4 m and α = 0.1, Courant number
β = 0.1, but it can be increased at least two times.

From Figures 1–3, one can see that the regular initial velocity distribution (1) (Figure 1
for t = 0) breaks down into smaller structures, and later, these small-scale structures clearly
retain the features of the initial anisotropy of Taylor–Green vortex. Further, the vortex flow
dies out due to viscosity. Note that the dimensionless time interval �t = 1 corresponds to the
period of rotation of the initial vortex (1). The analysis of the constant gas-dynamic values
shows that the symmetry of the flow is perfectly conserved, namely, with the accuracy of
the computations.

Figure 4 (left) shows the temporal evolution of the decaying kinetic energy Ekin averaged
over the calculation domain V0:

Ekin = 1

ρ0U
2
0 V0

∫
V0

1

2
ρ
(
u2

x + u2
y + u2

z

)
dxdydz. (42)

Kinetic energy and time are represented in dimensionless form. The presented lines
correspond to calculations with the number of grid points equal to 323, 643 and 1283,
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718 I.A. Shirokov et al.

Figure 2. Evolution of iso-surfaces of z-component of vorticity for Re = 100, t = 10.0, and
t = 15.0.

Figure 3. Evolution of iso-surfaces of z-component of vorticity for Re = 100, t = 20.0, and
t = 22.5.

Figure 4. Grid convergence of kinetic energy Ekin and dissipation rate ε for Re = 100.
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Journal of Turbulence 719

Figure 5. α-convergence of kinetic energy Ekin and dissipation rate ε for Re = 100.

and space steps equal to h = 10−3, 5 × 10−4 m, and h = 2.5 × 10−4 m, for α =
0.1.

Figure 4 (right) shows the temporal evolution of the dissipation rate ε = −dEkin/dt

together with the grid convergence for grid points 323, 643 and 1283. The dashed line shows
the reference data from Brachet et al. [1], obtained by different variants of discontinuous
Galerkin method for incompressible flow. The figure shows that the evolutions of dissipation
rate obtained for 643 and 1283 points are in very good agreement with the reference results
[1]. Maximal value of ε for Re = 100 is reached at dimensionless time t0 = 4.5. This
point distinguishes two different stages of Taylor–Green flow evolution: for t < t0, the
flow is laminar for all Reynolds numbers, and for t > t0, the flow remains laminar for
small Reynolds number and becomes turbulent with increasing Reynolds number [1]. For
t = t0, the Taylor–Green vortex flow is still well organised and anisotropic, thus the flow
is laminar (see Figure 1). Furthermore, the flow pattern retains its initial anisotropy and
remains laminar without generating the chaotic small vortex structures, typical for turbulent
vortex decay. Therefore, the Taylor–Green vortex decay corresponds perfectly with results,
reported in [1], for laminar flows with Re <500.

For Re = 100, the variation of α-coefficient in the range 0.1 < α < 1 slightly changes
the computational results (see Figure 5). Nevertheless, increasing of α allows to increase the
Courant number proportionally. Strong decreasing of α can bring non-physical oscillations,
and optimal α value is related with the desirable Courant number. These conclusions
correspond with the practical experience of QGD calculation of laminar unsteady flows
(e.g. [13 ]).

6. Computational results for Re = 280

Figures 6–8 illustrate the evolution of iso-surfaces of z-component of the dimensionless
vorticity (41) for Re = 280. Here the number of the grid points is 1283, or N = 128, the
space step is h = 2.5 × 10−4 m and α = 0.1. Yellow colour corresponds to Vz = 0.2, and
blue colour corresponds to Vz = −0.2. For comparison purposes, the time moments are the
same as in Figures 1–3 for Re = 100.

Figure 9 (left) shows the temporal evolution for kinetic energy Ekin (42) and its dis-
sipation rate ε (right) for Re = 280. The dashed line refers to the reference data from
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720 I.A. Shirokov et al.

Figure 6. Evolution of iso-surfaces of z-component of vorticity for Re = 280, t = 0.0, and t = 5.0 .

Figure 7. Evolution of iso-surfaces of z-component of vorticity for Re = 280, t = 10.0, and
t = 15.0.

Figure 8. Evolution of iso-surfaces of z-component of vorticity for Re = 280, t = 20.0, and
t = 22.5.
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Figure 9. Grid convergence of kinetic energy Ekin and dissipation rate ε for Re = 280.

Figure 10. Evolution of iso-surfaces of z-component of vorticity for Re = 1600, t = 0.0, and
t = 5.0.

[5], obtained by Fergus pseudo-spectral code and discontinuous Galerkin method with 963

degrees of freedom. The number of computational points in QGD algorithm is 643 and
1283, both with the coefficient in regularisation parameter α = 0.1.

The good agreement with the reference data is clearly seen for the grid with 1283 points.

7. Computational results for Re = 1600

In Figures 10–12, we show the iso-surfaces of the z-component of the dimensionless
vorticity of the velocity field (41). As in the previous pictures, iso-surfaces are presented
for the sequence of dimensionless time moments t = 0, 5, 10, 15, 20 and 22.5. The red
colour corresponds to Vz = 0.7, the blue colour corresponds to Vz = −0.7. Here, the grid
size is 1283, the space step is h = 2.5 × 10−4 m, α = 0.1.

From Figures 10–12, one can see that the regular initial velocity distribution (1)
(Figure 10, t = 0) breaks down into smaller structures. At times t= 5 and 10, these
small-scale structures clearly retain some of the initial anisotropy of Taylor–Green vortex,
but later the flow became chaotic and a nearly isotropic-developed vortex structure is seen.
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722 I.A. Shirokov et al.

Figure 11. Evolution of iso-surfaces of z-component of vorticity for Re = 1600, t = 10.0, and
t = 15.0.

Figure 12. Evolution of iso-surfaces of z-component of vorticity for Re = 1600, t = 20.0, and
t = 22.5.

From this moment, the flow may be interpreted as turbulent. At further times, the isotropic
turbulence dies out due to viscosity. These features of the flow evolution correspond per-
fectly to the Taylor–Green vortex evolution presented in [1] for Re ≥ 500, in [3] for Re =
1600 and in [6] for Re = 1500.

Figure 13 (left) shows the temporal evolution of the decaying kinetic energy Ekin

averaged over the calculation domain V0 (42). The solid line corresponds to our calcu-
lations with the number of grid points equal to 643 and 1283, and space steps equal to
h = 5 × 10−4 m and h = 2.5 × 10−4 m, correspondingly with α = 0.1. The dashed line
shows the reference DNS data from [3] and is presented as a data file in [4], obtained by the
pseudo-spectral method, and different variants of the discontinuous Galerkin method were
used. Figure 13 (right) shows the temporal evolution of the dissipation rate ε. Both figures
show that the evolutions of kinetic energy and dissipation rate obtained for 1283 are in a
quite good agreement with the reference results [3] and [4].

The Taylor–Green vortex simulations using the DNS approach are presented in a number
of papers (e.g. [1, 3–6]). In particular, in [6], calculations were performed for Re = 1500 in
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Figure 13. Time-evolution of kinetic energy Ekin and dissipation rate ε for Re = 1600.

a grid with 2563 nodes using high-order methods for space and time approximations. In [6],
it is pointed out that DNS simulation for Re = 1500 is expected to be well resolved only
if the number of grid nodes is at least equal to 2423 for uniform Cartesian computational
grids. In this case, Brachet et al. [1] estimated the error of the DNS simulations of the order
of only a few percent. For higher Reynolds numbers, the necessary number of grid points
must be increased accordingly with the relation N3 ∼ Re2 in order to obtain numerically
the Kolmogorov–Obukhov dissipation cascade.

Time evolutions obtained by QGD method for 1283 nodes are in a very good agreement
with results of DNS simulations of [1] and [6] obtained for 2563 nodes.

The LES approach allows to decrease the number of computational nodes compared
with DNS methods. The results of the flow simulation for Re = 1500 by LES method
implying the Smagorinsky filtering model for 643 computational nodes are demonstrated in
[6]. Here the dynamic variant of the Smagorinsky model was used, in which the magnitude
of the subgrid dissipation is automatically adapted according to the resolved scales in the
flow. In these calculations, the maximum dissipation rate is equal to ∼0.006 (see Figure
8.9 from [6]). The QGD algorithm for 643 grid gives the maximum dissipation rate ∼0.01,
while the reference value is ∼0.012 (see Figure 13, right). Therefore, for the Taylor–Green
vortex flow under consideration, the LES model seems to be more dissipative and less
accurate than QGD equations.

Influence of the computational parameters

Solution dependence from the space step h is seen from Figure 13 for α = 0.1. Increasing
of space step leads to relative smoothing of the evolution lines and displaces the maximum
of the dissipation rate ε(t) towards smaller time. Therefore, the increasing of the step looks
like the decreasing of the Reynolds number.

The convergence of the numerical solution for turbulent flow simulations is a more
complex problem than for laminar cases. For laminar flows, the decreasing of space step and
α proportionally increase the accuracy of the flow pattern. For turbulent flows, decreasing
of h allows to resolve the smaller vortex structures, not visible on the coarse grid. This
can bring some new features to the numerical solution and results in the nonlinear effects
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724 I.A. Shirokov et al.

Figure 14. α-convergence of kinetic energy Ekin (left) and dissipation rate ε (right) for Re = 1600.

in convergence process. For turbulent flow simulation, the optimal value of the tuning
parameter α may be related with the grid step and Reynolds number.

The QGD numerical algorithm presented here has only one tuning parameter, namely,
α- value involved in Equation (35). The influence of α-coefficient on the computational
results for grid with 1283 points is shown in Figure 14. Increasing α from 0.05 to 1 smoothes
the curves for Ekin and ε, and changes the form of the maximum dissipation rate ε-line. A
similar effect is observed when decreasing the number of space points in the computational
domain: α = 1 for 1283 points is similar to α = 0.1 for 643 points (see Figure 13, right).

The optimal value of the smoothing parameter τ (35), for Re = 1600 with 1283 grid
resolution, is obtained for α = 0.1.

Energy spectrum

The maximum value of the dissipation rate determines the zone of the laminar–turbulent
transition and the formation of the classical Kolmogorov–Obukhov-5/3 scaling.

The spectral density profile E(k) of kinetic energy for Re = 1600 is demonstrated in
Figure 15. Here the Kolmogorov–Obukhov law in spectral form E(k) ∼ k−5/3 is shown for
the comparison.

As in [6], the energy spectrum is calculated at time t = 8.5, when the ε-profile reaches
its maximum value (see Figure 13, right). The results obtained for two computational
grids with 643 and 1283 points are shown. Both curves are rather similar, which proves
the convergence of the numerical solution with grid refinement. The slope of the spectra
approximates correctly the Kolmogorov–Obukhov law for both computational grids that
show an inertial range behaviour of the flow. Increasing the number of grid points makes
the curve more smooth and close to the line with −5/3 slope.

The obtained spectra profiles are very similar to results for Re = 1600, shown in
Figure 4 from [5], and also to the spectra line obtained for Re = 1500, presented in Figure
8.3 from [6].

The algorithm of a spectral density calculation is described in detail in [34]. Here a
cubic computational domain is used, and Fourier coefficients are calculated as

almn
x = 8

N+1∑
k=0

N+1∑
j=0

N+1∑
i=0

CiCjCk

(
ρijk

2

)1/2

uxijkcos

(
lπi

N + 1

)
cos

(
mπj

N + 1

)
cos

(
nπk

N + 1

)
,
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Figure 15. Spectrum of kinetic energy E(k) for Re = 1600.

where

Ci = 1/2 for i = 0 and i = N + 1,

else Ci = 1. Here l, m, n = [0, N]. The values of Cj and Ck are determined analogously. In
the same way, we calculate Fourier coefficients almn

y and almn
z .

Let us introduce

almn = ClCmCn

((
almn

x

)2 + (
almn

y

)2 + (
almn

z

)2)
,

where

Cl = 1/2 for l = 0, else Cl = 1,

the same for Cm and Cn, l, m, n = [0, N].
We determine the spectral density E(k) in the following form:

E(k) = (N + 1)−6
∑
lmn

almn, with k − 1/2 ≤ (l2 + m2 + n2) < k + 1/2. (43)

Here 0 ≤ k ≤ kmax, where kmax = N.
The Parseval’s identity, in the form

∫ kmax+1

0
E(k) ≈ 1

V0

∫
V0

1

2
ρ
(
u2

x + u2
y + u2

z

)
dxdydz, (44)

is used to estimate the accuracy of the calculations. In the numerical integration, the
trapezoidal rule is employed. The relative error of the numerical validation of Equation
(44) has the order of ∼10−3.
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726 I.A. Shirokov et al.

8. Additional remarks

In the numerical simulation of turbulence, the conservation of the flow symmetry is impor-
tant, because some invariants such as helicity (in 3D) and enstrophy (in 2D) are fundamen-
tally related to the symmetry of the flow. Helicity expresses the correlation between the
velocity and its curl, and it is conserved as good as a numerical scheme conserves mirror
symmetry [36]. The better symmetry properties of differential operators are reproduced by
finite-difference approximation, the better accuracy of the smallest scales of motion could
be achieved, since the behaviour of turbulent flow on small scales is a result of a delicate
balance between convective transport and diffusive dissipation [37]. In QGD calculations,
the symmetry of the numerical solution is provided by the symmetrical construction of the
numerical scheme that uses only the central-difference space approximations.

In order to prove the symmetry of the QGD numerical solution, all our calculations
are performed in the whole computational domain. Figure 16 presents the streamlines and
vorticity contours Vz in the plane z = 0.008 m for Re = 1600 (left) and Re = 100 (right)
for t = 20. A developed vortex flow pattern is seen for Re = 1600, while for Re = 100,
no small vortex structures are visible. Moreover, for Re = 1600, the level of vorticity Vz

is significantly higher than for Re = 100. Figure 16also demonstrates the symmetry of the
numerical solution with respect to point x = 0, y = 0, that corresponds to the symmetry
of the initial condition (1). For example, for Re = 1600 in the symmetric points with
coordinates (−0.008125, −0.008125, −0.008125) and (0.008125, 0.008125, 0.008125),
the values of both z-components of the vorticity are equal to Vz = 0.229425. This proves
the correctness and symmetry properties of the QGD numerical solution.

In order to compare the numerical results for different Reynolds numbers, Figure 17
shows the temporal dependence of the dissipation rate ε(t) for Re = 100 and 280 (laminar
flow evolution) and Re = 1600 (laminar–turbulent transition during the decay). Here α =
0.1, and the grid consists of 1283 points. Reference results from [1,3,5] for incompressible
flows are also shown. When increasing the initial Reynolds number of the flow, the ε(t)
maximum moves toward larger time moments (t0 ∼ 4.5, 6 and 8.5, correspondingly).

Further increasing of Reynolds number to 3000 and 5000 gives almost indistinguishable
results for the ε-peak maximum and its position, which corresponds to the time t0 ∼9
[2,8,10]. These calculations were performed by DNS, LES and implicit LES algorithms
for incompressible flows. It may be suggested that for Re ≥ 3000, the flow is close to the
viscosity-independent limit.

Figure 16. Symmetry of the numerical solution, Re = 1600 (left) and 100 (right).
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Figure 17. Comparison of dissipation rate evolution for Re = 100, 280 and 1600.

Figure 18. Dissipation rate evolution ε(t) for Re = 5000 for different values of α-coefficient.

The example of QGD calculation for Re = 5000 and its comparison with the reference
data for ε value are presented in Figure 18 for α = 0.5, 0.1 and 0.05. Courant number is
β = 0.1, and 1283 grid points are used. In reference data [2] and [8], calculations were
performed for non-dimensional time up to t = 10.

According to Figure 18, the optimal QGD result is archived for α = 0.05. The differences
with the reference data near the maximum value of ε may be explained by the fact that QGD
equations describe a viscous compressible gas with kinetic and internal energy exchange.
The contribution of the compressibility effects can be estimated by the pressure dilatation
in the form proposed in [4,5]:

ε3 = − L

ρU 3
0 V0

∫
V0

p

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)
dxdydz. (45)

The analysis of the ε3 time evolution shows that it is non-zero in the time interval
5 < t < 12. These non-zero ε3-values may affect the delicate balance of the Ekin near
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728 I.A. Shirokov et al.

the maximum of −dEkin/dt-point. The extreme values are as follows: for Re = 280, ε3=
3 × 10−5, for Re = 1600, ε3= 5 × 10−5 and for Re = 5000, ε3= 1.3 × 10−4.

For Re = 5 × 104, QGD numerical simulations were performed up to t = 20 using
computational grids 323 and 643 with α = 0.1 and β = 0.1 [34]. The Kolmogorov–
Obukhov-5/3 scaling spectra were obtained for t > 9.

9. Conclusions

In the paper, we obtain QGD equations by temporal averaging of Navier–Stokes equation
system. In the previous investigations, τ -terms, which differ from the QGD system from
Navier–Stokes equations, were used as effective strongly nonlinear regularisers. It gives
opportunity to develop a simple finite-volume numerical algorithm for a wide range of
non-stationary gas-dynamic flow calculations, namely, supersonic gas flows with strong
shock waves.

Here, for the first time, the QGD algorithm is examined for simulation of laminar–
turbulent transition in Taylor–Green flow. It was shown that QGD equations describe
uniformly laminar and turbulent regimes including the transition to turbulence for viscous
compressible gas-dynamic flows.

For laminar flows, τ -terms in QGD system work as a nonlinear adaptive dissipation and
provide a monotone convergence of the numerical solution with decreasing of the space
step. For turbulent flows, τ -terms act as a new variant of subgrid dissipation that smoothes
the details of the unresolved scales. The quality of the numerical solution for turbulent flows
may be improved by adjusting the tuning parameter α depending on Reynolds number and
space step.

The numerical algorithm used to solve the QGD system consists of a central-difference
approximation of the second order for all space derivatives, including convective terms,
and a first-order forward-difference approximation in time. This explicit-in-time algorithm
is simple for coding, and relatively cheap by computational cost, because it requires no
Riemann solvers or additional monotonisation procedures. The QGD algorithm is well
suited to parallel implementations.

The presented results show the perspectives of the QGD equation system in description
and numerical simulations of laminar–turbulent compressible heat-conducting gas flows
for subsonic and supersonic regimes.
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