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1. INTRODUCTION

In this paper we present a numerical algorithm and simulation results obtained for unsteady three�
dimensional flows of an ideal quasi�neutral plasma in the field of electromagnetic forces. The algorithm
is an extension of previously constructed finite�difference schemes based on the quasi�gasdynamic
(QGD) equations for viscous compressible gas flows [1–3]. This work is closely related to the research
interests of Professor Favorskii, who, as a renowned expert in the computational fluid dynamics, actively
supported a then nascent scientific area whose development has led to the formation of the QGD
approach. As the head of a scientific school in computational MHD, Professor Favorskii would have
appreciated the results presented below.

The QGD equations express the conservation laws for gasdynamic variables, namely, the density,
momentum components, and energy averaged over a short time interval. It is assumed that an averaged
quantity is a smooth function of time, which can be expanded in a Taylor series about every time t, i.e.,

. (1)

The conservation law for the averaged quantity  must contain terms reflecting the conservation of
 and of a correction term proportional to a small parameter  that has the dimension of time. Thus,

the QGD equations represent the Navier–Stokes equations involving additional dissipative terms. These
terms play a stabilizing role in the numerical solution of the equations, since they introduce additional dis�
sipation.

The QGD equations with allowance for magnetic fields were first considered in [3, 4] for the descrip�
tion of viscous gas and fluid flows. The effect of a magnetic field was taken into account in the form of
magnetic forces and dissipative �correction terms in the gas dynamics part, while the field itself was
described by Maxwell’s equations without �correction. For this system, an entropy balance equation was
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constructed, the exact solution of the Hartman problem was obtained, and the flow of an electrically con�
ducting melt was computed in the no induction approximation.

The above described averaging procedure can also be applied to the magnetic field equations written in
the framework of the unified MHD system. Due to this approach, magnetic viscous flows would be
described with the help of quasi�gasdynamic equations for magnetohydrodynamics (referred to as quasi�
MHD (QMHD) equations) in a self�consistent form. Such equations were first considered in [5, 6], where
they were examined as applied to standard 1D and 2D tests, namely, the Riemann problem, propagation
of magnetic waves, the dissipation and decay of a Alfven wave, a blast wave in a magnetized medium, the
Orszag–Tang vortex, and the interaction of a shock wave with a cloud. In all the cases, the numerical solu�
tion was demonstrated to converge well to the exact solution in the case of mesh refinement.

In [7] the QMHD equations were extended to the case of the nonideal gas equation of state in the pres�
ence of external forces and a heat source. A heat balance equation was derived, and the entropy properties
of the QMHD equations were examined.

In this paper, we present the system of QMHD equations in the 3D case written componentwise and
describe numerical results for 3D test problems, such as a central blast in a magnetic field, the interaction
of a shock wave with a cloud, and the three�dimensional Orszag–Tang vortex. Additionally, preliminary
numerical results are demonstrated for a plasma pinch confined by a longitudinal magnetic field. The sta�
bility of a pinch is a major problem in plasma confinement within magnetic traps.

2. QMHD EQUATIONS

The QMHD equations are written in a Cartesian coordinate system with use of the following standard
notation for independent variables:  is the density; , , and  are the velocity components; , ,
and  are the magnetic flux density components; and  is the total energy per unit volume.

For the squared magnitudes of the velocity and magnetic flux density, we use the brief notation

The factor  was included in the definition of the magnetic field . In this notation, the total energy
per unit volume is written as

where  is the specific internal energy. To make the system of equations closed, we need an equation of
state. For the case of an ideal gas, it has the form  where  is the gasdynamic pressure and 
is the ratio of specific heats. The equation of state expressed in terms of temperature has the form

, where  is the universal gas constant and  is the mean molecular weight of the gas. From
this, the temperature  is expressed as  

A combination of , , and  gives the total specific enthalpy:

The small parameter with respect to which we perform averaging is denoted by ; it has the dimension
of time (see (1)). For convenience, the second term in the Taylor expansion in (1) is denoted as the incre�
ment :

Let us write out the increments of all the quantities to be used in what follows. These expressions are
derived from the MHD equations for an inviscid non�heat�conducting quasi�neutral plasma [8]:
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where i = x, y, z and u is the velocity vector. The scalar product of the velocity with the gradient of  and
the divergence of the velocity are given by

The mass conservation law in the framework of the QMHD system is written as

(2)

where the fluxes are corrected components of the mass flux density:

The correction value is proportional to  and is written in terns of spatial derivatives, which are, in fact,
the derivatives of fluxes in the Euler equation for MHD:

The conservation laws for the momentum components have the form

(3)

where i = x, y, z. The components of the tensor  (i, j = x, y, z) express the force associated with the cor�
rected momentum flux and the gasdynamic and magnetic pressure in each direction:

Here and below, the first and second indices are the column and row numbers, respectively. The tensor 

(i, j = x, y, z) includes the Navier–Stokes viscous stress tensor , which is proportional to the dynamic

viscosity , and the tensor  associated with QMHD correction terms proportional to :

(4)
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where

Note that  and the diagonal terms are

Tensor  in (4) is written as

To the increment , we apply differentiation rules according to which .

The magnetic filed equations have the form

(5)

where the tensor containing the electric field components is given by

(6)

while the tensor expressing the QMHD correction term is determined by a combination of increments:

(7)

The total energy equation is

(8)

where

Here, i = x, y, z and k is the thermal conductivity, which is determined in terms of , , , and the Prandtl
number Pr:
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Equations (2), (3), (5), and (8) make up the QMHD system. The parameters of the system are the ratio
of specific heats , the dynamic viscosity , the Prandtl number Pr, the mean molecular weight of the gas ,
and the small regularizing parameter . For rarefied gases,  is naturally defined as

(9)

where l is the characteristic free path of gas molecules and  is the maximum of the fast
magnetosonic velocity. For example, the fast magnetosonic velocity in the x direction is given by

where c is the speed of sound:

The proportionality constant  in (9) is chosen in the range 0.1–0.4. Definition (9) means that  is the
time over which a perturbation propagating at the maximum possible velocity travels a distance equal to
the free path in the gas.

In the case of rarefied gases,  is related to  as

where Sc is the Schmidt number.
If the gas cannot be treated as rarefied, then, according to (9), . If the physical processes weakly

depend on the viscosity and thermal conductivity and the gas is not rarefied, then the QMHD equations
pass into the standard MHD equation for an inviscid non�heat�conducting quasi�neutral gas. Written in
conservative variables, these equations have the form (see [8])
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For flows with low viscosity, for example, for ideal plasma flows,  is a parameter of the numerical
scheme. In this case, it plays an exclusively regularizing role and tends to zero as the cell size decreases.

Note that the QMHD equations do not contain terms proportional to the second time derivative, i.e.,

terms of the form . Formally, these terms can be written out when the original equations are aver�
aged over time, but, in this paper, they are assumed to be small and are omitted (see [9]).

3. NUMERICAL ALGORITHM

The system of QMHD equations is solved numerically by applying an explicit difference scheme with
derivatives approximated by central differences. We introduce a uniform grid that divides the computa�
tional domain into cells of size , where  denotes the corresponding mesh size. The indepen�
dent variables are placed at the cell centers and are denoted by integer indices i, j, and k, which corre�
spond to the x, y, and z directions. The half�integer indices denote quantities defined on cell interfaces.
As an example, Fig. 1 shows two adjacent grid cells with quantities defined at their centers and on the
interface between them.

When Eqs. (2), (3), (5), (8) are solved numerically, the time and space derivatives are replaced by dif�
ference expressions of the form

(10)

where  is the time step,  denotes the unknown quantities at the new time level , and  denotes
the known quantities at the time level t. Rules (10) mean that the variations in the quantities within a cell
are determined by the fluxes through its faces.

The time step is determined by the Courant condition

where  is the Courant number, which is determined experimentally and is no higher than 1.

Since the spatial derivatives in (2), (3), (5), and (8) involve quantities that are themselves determined
by spatial derivatives, they are computed using differences between the centers of the adjacent cells:

This means that the unknowns  placed at the cell center with index  are computed using informa�
tion from the adjacent cells with indices , , and . Thus, the stencil of the
scheme consists of 27 points.
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The stability of the difference scheme is ensured by the regularizing parameters , , and k, which are
proportional to the cell sizes:

where

4. DIVERGENCE�FREE MAGNETIC FIELD

In the simulation of magnetic flows, it is necessary to ensure that the computed magnetic field is free
of divergence. For this purpose, we propose using the constrained transport method from [10]. The same
method was used in [11] to construct a numerical scheme for computing MHD turbulence in an interstel�
lar gas. The method is based on Faraday’ law of induction

(11)

where  is the vector of electric field strength. In the QMHD approach, Eqs. (5) are replaced by Eqs. (11),
in which the electric field components are written taking into account the regularizing terms.

The electric field strength in matter moving at the velocity u is given by

Therefore, according to (6) and (7), the electric field components on corresponding ñell boundaries
(see Fig. 2) are written in view of the QMHD correction terms as
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Fig. 2. Electric field components used in the magnetic field equations in the QMHD system.
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where the corresponding derivatives are calculated depending on the velocity sign on the face,

with the use of difference expressions of the form

The resulting electric field components at the centers of cell edges are used in (11) to compute the mag�
netic field components at the centers of cell faces at the next time level  (see Fig. 4). The difference
approximation of (11) is given by
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Fig. 3. Transfer of the electric field components from the centers of cell faces to the edge centers.
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The magnetic field components at the cell centers are calculated by simple averaging (Fig. 5):

(13)

The magnetic field given by (13) is free of divergence. This can be seen by calculating the divergence at
cell vertices using the formula

5. NUMERICAL EXAMPLES

Below, we present the numerical results obtained by applying the method described to some popular
MHD tests extended to three dimensions. The properties of the method as applied to one� and two�
dimensional tests were analyzed numerically in [5, 6].

5.1. Blast in a Magnetic Field

The problem is to compute the structure of a perturbation caused by an excess pressure in a bounded
domain as the perturbation travels through a medium with a magnetic field (blast wave problem) [12]. The
computational domain was a cube with side , in which we introduced a uniform grid consisting of

 cells. Initially, the space was filled with an ideal gas with , density , and pressure
, except for the central spherical domain of radius , where the pressure was specified as

. In the x direction, a homogeneous magnetic field  was applied (see Fig. 6). The compu�
tations were performed with  and Courant number .

The numerical results obtained at the time  are presented in Fig. 7. Specifically, the loga�
rithm of density is shown in the form of a three�dimensional distribution and the two�dimensional cross
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Fig. 5. Computation of the magnetic field components at the time level t + Δt at the cell centers.
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section along the plane  with level lines. Due to the magnetic pressure directed orthogonally to the
field, the flow has a structure extended in the field direction. The maximum density  is reached
in the areas of maximum medium resistance. Minimum values occur in the center: .

0y =

log 0 35ρ .∼

log 0 95ρ − .∼

γ = 1.4 ρ = 1 p = 1

d = 0.1 ρ = 1 p = 1000

L = 1

Bx = 10

Fig. 6. Blast in a magnetic field: initial conditions.
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Fig. 7. Blast in a magnetic field. The logarithm of the density is shown as a three�dimensional distribution and the two�
dimensional cross section in the plane y = 0 with level lines at the time t = 3 × 10–2. Additionally, the values in typical
regions are indicated.
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Fig. 8. Interaction of a shock wave with a cloud: initial conditions.
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in typical regions are indicated.
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5.2. Interaction of a Shock Wave with a Cloud

The problem is to compute the decay of a dense cloud interacting with a shock wave [13]. The
computational domain was a cube with side , in which we introduced a uniform grid consisting
of  cells. The shock wave was initiated by a discontinuity between two states

 separated by the plane :

A cloud of density  in a hydrostatic equilibrium with the surrounding medium was specified as a
ball of radius  centered at the point  (see Fig. 8). The computations were
performed with , , and .

The numerical results obtained at the time  are presented in Fig. 9. Specifically, the log�
arithm of density is shown in the form of a three�dimensional distribution and the two�dimensional cross
section along the plane  with level lines. The resulting configuration reflects the hydrodynamic flow
past an obstacle. Due to the resistance of the cloud to the flow, a hemispherical contact discontinuity arises
ahead of the cloud. Behind the cloud, we see an anisotropic flow with a structure related to the direction
of the magnetic field.

5.3. Three�Dimensional Orszag–Tang Vortex

This problem was first proposed in [14] in a two�dimensional formulation in order to study the evolu�
tion of supersonic turbulence and, later, became known as the Orszag–Tang vortex. Initially, smooth ini�
tial conditions are set, which rapidly give rise to a complex flow with the formation and interaction of
shock waves. The problem is hard to solve for many numerical schemes, since the arising gradients, which
are especially strong in the central part of the computational domain, can lead to oscillations and negative
density values.
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Fig. 10. Three�dimensional Orszag–Tang vortex: the magnetic field energy at the time t = 0.5.
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Fig. 11. Initial configuration of the plasma pinch in a magnetic trap.
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Fig. 12. Plasma pinch in a magnetic trap: density distribution with three characteristic levels 7.3 × 10–5, 1.5 × 10–4, and
1.61 × 10–4 at some time.



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 55  No. 8  2015

NUMERICAL SIMULATION 1343

Below, this problem was considered in a three�dimensional formulation for the first time. The compu�
tational domain was a cube with side , in which we introduced a uniform grid consisting of

 cells. Periodic conditions were set on the boundary. The following initial conditions were
proposed for the 3D case:

where . The computations were performed with α = 0.5, σ = 0.1, and .

The numerical results obtained at the time t = 0.5 are presented in Fig. 10. Specifically, the energy of
the magnetic field is shown by level lines in the range of 0.02 to 2.25. The method produces a correct flow
structure with all discontinuities on an infinitely long time interval. As the computations continue, the
flow gradually breaks up into small structures and its kinetic energy dissipates due to viscosity.

5.4. Confinement of a Plasma Pinch in a Magnetic Trap

The confinement of a hot plasma pinch in a trap with the help of a longitudinal magnetic field was sim�
ulated. Such a pinch is known as a �pinch. A task of great interest from an engineering point of view, this
problem concerns the creation of tokamak�type devices for thermonuclear fusion and has been addressed
for several decades (see, e.g., [15, 16]). In experiments, the time of pinch confinement in a stable state is
about several milliseconds, which is so short because of the development of hydrodynamic instability.
We considered this process in a dimensionless formulation.
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Fig. 13. Development of hydrodynamic instability in the pinch computed in the 2D formulation in the xy plane on a
400 × 400 grid. The density distribution at some time is shown on a logarithmic scale.
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The computational domain was a cube with side  filled up with an ideal gas with  (which

corresponds to hydrogen), density , and pressure . A pinch was set in the center of

the computational domain as a cylinder of radius  with inside characteristics  and

. Initially, we specified the longitudinal magnetic field , where . The initial config�
uration of the pinch is shown in Fig. 11. A uniform grid consisting of  cells was introduced.
The computations were performed with  and .

In the simulation, we obtained a cyclic process of plasma expansions and contractions under the influ�
ence of the magnetic pressure. Uniformly distributed at the initial time, the magnetic field was pushed out
of the pinch region. Several cycles of direct and reverse energy flow between the magnetic field energy and
the kinetic energy of the pinch matter were observed. The expansion of the plasma was suppressed by
increasing the energy of the field.

To verify the stability of the code performance, we computed a pinch inclined initially to the  axis at
an angle of . As a result, the pinch aligned out along the magnetic field via cyclic oscillations. This
process is demonstrated in Fig. 12, which shows the density distributions at some time with three charac�

teristic levels: , , and . It can be seen that the shape of the pinch is deformed
in the oscillations.

In the three�dimensional case, we failed to resolve small�scale structures and simulate the development
of instability because of the rather coarse grid used. Such instability was obtained when the pinch edge in
the xy plane was simulated on a  grid in the two�dimensional formulation. The instability devel�
oped transversely to the field direction and resembled the Rayleigh–Taylor instability. The structures gen�
erated in this process are demonstrated in Fig. 13, which displays the density distribution on a logarithmic
scale at some time.

In the case of a weak magnetic field, no cyclic process or instability development was observed. The
pinch broke up due to diffusion.

6. CONCLUSIONS

An algorithm for solving the QMHD equations describing unsteady compressible MHD flows with the
ideal gas equation of state was presented. In contrast to earlier works, the QMHD equations were written
is a self�consistent form within the framework of a unified approach to both conservation law equations in
fluid dynamics and Faraday’s laws for magnetic fields.

The scheme represented is fully three�dimensional, and all physical quantities are computed without
splitting in space. The numerical algorithm was tested by computing several hard�to�solve three�dimen�
sional MHD problems, on which the code exhibited an exceptionally stable performance. The chosen
numerical parameter α = 0.5 and the Courant number σ = 0.1 are universal for any problem.

The algorithm is easy to implement but rather cumbersome because of the additional monotonizing
correction terms proportional to . Due to the explicit scheme with central differences, the code was par�
allelized in a natural way by applying domain decomposition over the processors.

An advantage of the approach is that there is no need to use conventional monotonizing procedures,
such as limiters, which are required in the case of the standard MHD equations. Such monotonizing pro�
cedures are not universal, so that the code has to be tuned in each particular case.

A shortcoming of the method is that it is first�order accurate, so finer grids have to be used to obtain
solutions comparable in quality to those produced by high�order schemes. Note that the order of accuracy
is determined by the solution behavior in smooth domains, while the most interesting are discontinuous
solutions.
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