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INTRODUCTION

The fluid dynamics equations in the shallow water (SW) approximation are widely used in the numer-
ical simulation of free surface f lows when the vertical velocity can be neglected (see, e.g., [1, 2]). Examples
are f lows near a shoreline, whose position can vary due to water runup and rundown, which is accompa-
nied by the formation of dry-bed zones. Specifically, such problems arise in the simulation of tsunamis in
nearshore regions [3].

A new numerical algorithm for solving the SW equations was proposed and investigated in [4, 5]. The
algorithm is based on SW equations regularized or smoothed over a short time interval. The resulting
equations were called regularized SW equations. They can also be treated as a version of the quasi-gasdy-
namic equations in the barotropic approximation, which are used for the numerical simulation of viscous
compressible gas f lows [6, 7].

A wide variety of one-dimensional test problems computed on the basis of the regularized SW equa-
tions can be found in [8]. In [9] the formation of a solitary wave in a circular wind-water tunnel was
numerically simulated for the first time with the use of the SW approximation. The solitary wave was
formed in the tunnel under the influence of a distributed wind load. It was shown in [10] that a numerical
algorithm based on the regularized SW equations can be used to simulate dam break f lows over a surface
with forward- and backward-facing steps. In [11] the liquid oscillations in a fuel tank of an icebreaker were
numerically modeled in various cases of vessel stop caused by its collision with ice and maneuvers in
waves. In [12] the formation of Faraday waves caused by vertical oscillations of a vessel with f luid was
numerically simulated for the first time in the SW approximation. To simulate the effect of the vessel
acceleration on the hydrodynamics of the process, the problems were solved in noninertial frames of ref-
erence.

In this paper, a numerical method based on solving the regularized SW equations is extended to f lows
with a moving boundary associated with the formation of dry-bed zones. Well-balanced versions of the
algorithm are presented. The algorithm is tested using two Riemann problems with dry-bed zones forming
over a f lat bottom and two problems of water runup onto a constant-slope beach. Additionally, numerical
results are presented for tsunami runup onto a beach of complex geometry.
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1. REGULARIZED SHALLOW WATER EQUATIONS
The SW equations in the form of mass and momentum conservation laws can be written as

 (1)

 (2)

 (3)

Here, the shear stress tensor components are given by

 (4)

 (5)

The unknowns in system (1)–(3) are the water height , which is measured from the given bottom
profile , and the horizontal velocity components  and . Here, g is the acceleration
of gravity,  is the kinematic viscosity coefficient, and  and  are the components of external forces.

According to [4, 5], the regularized SW equations (1)–(3) have the form

 (6)

 (7)

 (8)

where

 (9)

The components of the mass f lux density are calculated as

 (10)

where

 (11)

 (12)

In contrast to the representation in [4, 5] and by analogy with the corresponding expressions for the quasi-
gasdynamic equations in [6, 7], the expressions for  are presented in compact form convenient for
numerical implementation:

 (13)
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Here, , , and R* are defined as

The tensor  is asymmetric, but  remains symmetric; as a result, the
equations of motion can be represented as

In the above expressions,  is a small parameter of regularization or time smoothing and has the dimen-
sion of time. The terms involving  are regularizing terms for SW equations (1)–(3). When , the reg-
ularized equations (6)–(8) become the classical SW equations.

Equation (6) contains second spatial derivatives, which leads to a special boundary condition in the
formulation of initial–boundary value problems for the regularized SW equations. Specifically, the imper-
meability condition for system (6)–(8) has the form . In Cartesian coordinates, according to (10)–(12),
this condition is written depending on the position of the boundary as

or

For the regularized SW equations, a balance equation for specific entropy has been derived and it has been
established that the specific entropy does not decrease. Thus, it has been shown that the -terms are dis-
sipative in nature [13–15]. A linearized system of regularized SW equations was constructed. For it, energy
relations were obtained and theorems on the asymptotic stability of an equilibrium solution and on the
uniqueness of a classical solution were proved (see [16]). Necessary and sufficient conditions for the non-
uniform and uniform Petrovskii parabolicity of the regularized equations were established. The properties
of exact solutions of the regularized equations and their relations to exact solutions of the original equa-
tions for the barotropic gas dynamics equations and the SW approximation were examined in [14–16].
A method for constructing common exact solutions of the classical and regularized SW equations in the
Saint-Venant form was proposed in the stationary case. It was shown that, if , , and 
are the solution of the stationary SW equations, then they are also the solution of the stationary regularized
equations.

Specifically, for the regularized SW equations and the original system (1)–(3), the hydrostatic equilib-
rium condition is satisfied, i.e., for a f luid that is initially at rest ( ) in the absence of external
forces ( ), the free surface elevation remains a constant at any subsequent time:

 (14)
Expression (14) is the exact solution of systems (1)–(3) and (6)–(8) in the indicated case.

Thus, the regularized SW equations can be treated as an extension of the classical SW equations.

2. NUMERICAL ALGORITHM
Let us construct a finite-difference approximation of the regularized SW equations in a Cartesian coor-

dinate system. Suppose that all the desired variables are defined at grid nodes. The corresponding stencil
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for a rectangular spatial grid is shown in Fig. 1. The variable h will be used to demonstrate computational
formulas.

The values of variables at cell centers are defined as the arithmetic mean of their values at neighboring
nodes, for example,

The values of variables on an edge are calculated as the mean of the values at the points this edge joins:

A similar approximation is used for ,  and the variable parameter . The bottom profile  is a
given function. Nevertheless, its values at half-integer points have to be determined in the same manner
as the values of h and velocity, i.e., by using the above formulas.

To approximate the f luxes  and , their values are determined at half-integer points on edges.
Here and below, for convenience, a superscript is used to denote the x- and y-components. Thus, we need
to determine  and . The corresponding expressions involve derivatives, which
are approximated by central differences. For example, the expressions for  and  are

The values  and  are approximated in a similar fashion.
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Fig. 1. Stencil for a rectangular spatial grid.
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Using an integro-interpolation method for approximating Eq. (6), we construct an explicit (in time)
difference scheme for its solution:

 (15)

where  is the time step,  and  are the mesh sizes in x and y, and  is the value of  at the upper
time level.

To approximate the tensor , we use (13) with the expressions involved in , , and R* approxi-
mated by central differences. All the necessary difference formulas are constructed in a similar manner to
the above ones with the use of the stencil shown in Fig. 1. The values of  and  at the next time level
are calculated using the difference formulas

 (16)

 (17)

The expressions for  and  are
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The regularization parameter is given by the relation

 (20)

where  is a numerical coefficient chosen to ensure the required stability and accuracy of the algo-
rithm. The characteristic velocity is chosen to be the propagation velocity of long waves: .

In problems in the SW approximation, the value of the kinematic viscosity  is, as a rule, very small.
Nevertheless, numerical experiments show that, for f lows with large Froude numbers, it is convenient to
consider the terms  as artificial regularizers and relate  to  (see [17]):

In the computations presented below, we set .
The stability condition for the constructed explicit difference scheme is chosen according to the Cou-

rant condition imposed on the time step:

 (21)

( ) ( ), 1 2 1 2 1 2 1 2
ˆ ,x x x x

i j i j i j i j i j i j
t th h j j j j
x y, + / , − / , , + / , − /

Δ Δ= − − − −
Δ Δ

tΔ xΔ yΔ ,î jh i jh ,
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In [16] the energy inequality method in the linear approximation was used to obtain a sufficient condition
(coinciding with the Courant one) for the stability of a time-explicit difference scheme for solving the reg-
ularized equations.

Obviously, due to the use of condition (20), the order of the above difference scheme is reduced and it
becomes a first-order accurate scheme. However, the experience gained in the application of similar
schemes to gasdynamic and viscous incompressible simulations has shown that they have a number of
positive qualities when applied to the computation of unsteady f lows with high gradients.

As applied to the SW equations, it was shown in [17] for a number of Riemann problems computed in
the framework of the one-dimensional Saint-Venant equations that the numerical method described
above is more accurate than the Lax–Friedrichs scheme.

The algorithm presented can naturally be extended to nonuniform spatial grids. Corresponding differ-
ence schemes on unstructured triangular meshes were constructed and tested in [18]. In [19] regularized
SW equations were derived and corresponding difference schemes for the equations written in a polar
coordinate system were constructed.

3. HYDROSTATIC EQUILIBRIUM CONDITION

For many problems, it is necessary that the difference algorithm used satisfy the hydrostatic equilib-
rium condition. In the English-language literature, such a numerical algorithm is called a well-balanced
scheme (see, e.g., [20, 21]). This condition means that, in the absence of external forces for a f luid that is
initially at rest, the numerical solution must not exhibit spurious perturbations caused by the difference
approximation of the bottom irregularities.

To check whether the difference algorithm is well balanced, the equilibrium solution  and
 is substituted into (15)–(17) to show that the difference equations hold identically for

this solution. Indeed, the difference analogues of f luxes (10) and (11) in Eq. (15) vanish in view of relations
of the form

which are ensured by the discrete hydrostatic equilibrium conditions in the  and  directions:
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ence approximation of bottom irregularities. In the case of highly unsteady intensive f lows, when such per-
turbations are not essential, it is sufficient to use the simpler approximation

 (28)

The construction of well-balanced difference schemes for high-order accurate algorithms faces substan-
tial difficulties (see, e.g., [21]). For the algorithm proposed, this property holds, since the adaptive -dis-
sipation involved vanishes for stationary equilibrium solutions. In [22] new versions of conservative spatial
discretizations that satisfy the energy conservation laws and are well balanced were constructed for the
barotropic quasi-gasdynamic equations with external forces. A special case of these discretizations is the
difference scheme described above.

In [4, 5] a well-balanced algorithm for solving the SW equations for one-dimensional plane f lows was
presented and formula (24) was derived for the first time in the one-dimensional case. In [18] formulas (24) and
(25) for  and  were extended to the approximation of the regularized SW equations on unstruc-
tured meshes. In [19] it was shown for a rotating f low that the accuracy of an unbalanced difference
scheme for an equilibrium solution is ~10–3, while, in the case of a well-balanced scheme, the accuracy
increases up to ~ . These computations were performed in a polar coordinate system.

4. MOVING SHORELINE
In many applications associated, for example, with the numerical simulation of river f looding and tsu-

nami runup, the boundaries of dry-bed areas have to be determined. In these zones, the water height is
considered to be zero: . Various approaches are used to describe dry-bed areas in numerical
algorithms intended for the SW equations (see, for example, [21, 23, 24]). In our algorithm based on the
regularized SW equations, we apply a widely used method described, for example, in [23].

According to this approach, the water in a dry-bed area is assumed to be at rest. Then the water depth
is computed using the condition that, for small , the f low velocity is zero ( ), i.e.,
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is placed at the center of the domain at the point with coordinate x = 25 m. At the initial time the f luid is
at rest and the velocities to the left and right of the discontinuity are zero (  m/s,  m/s). In the
left domain, the water height is  m, and there is a dry bed (  m) on the right.

On the basis of the general solution to the Riemann problem [25, 26], the analytical solution of the
given Riemann problem is written as

This solution is used to determine the velocity of the moving shoreline . Note that the exact
location of the moving shoreline cannot be determined in the numerical computation, since the domain
with  is eliminated from the consideration due to the dry bed condition.

The computations were conducted up to the time  s on four refined meshes with  m
,  m ,  m , and  m ;

here, N is the number of points in space. The other computational parameters were specified as follows:
the regularization parameter , the Courant number , and the cutoff parameter 
m. When ε was increased to 0.001 m, the numerical results near the moving shoreline became less accu-
rate. When ε was decreased 0.00001 m, the time step had to be reduced to ensure stable computations and,
accordingly, β was reduced to 0.01. The poorer stability of the algorithm was caused by the sharp increase
in the Froude number  near the dry-bed areas.

The general form of the solution and the convergence of the numerical solution to the analytical one
are presented in Fig. 2. Specifically, Fig. 2a shows the self-similar solution, while Fig. 2b illustrates the
convergence as the grid is refined on the interval  at the time  s for , , and

. It can be seen that the numerical and analytical solutions agree on nearly the entire plot, and a
noticeable difference occurs only on the moving shoreline. The plots show that the accuracy of the numer-
ical solution is improved with decreasing mesh size. The influence of  on the accuracy of the determined
shoreline is insignificant.

The position of the shoreline is affected by the value of . Due to the numerical errors,  cannot be
zero. When  is zero, any numerical perturbation for problems with dry areas  leads to negative values
of h. From a physical point of view, for example, in the case of a f low 10 m deep, we neglect the motion
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of the f luid in a layer of thickness 10 cm (  m) or 1 cm (  m), respectively. The parameter 
has to be chosen according depending on the problem under consideration. For example, when the runup
of a 10-meter wave is modeled, the motion of the f luid in a 1-cm thick layer near the dry bed can be
neglected.

In the one-dimensional Riemann problem with a dry bed, the f luid runs over a dry area. A more com-
plicated problem is one in which the f luid runs down a surface to form a dry area. Such a problem is
addressed in the next section.

6. RIEMANN PROBLEM WITH A DIVERGING FLUID

Consider a Riemann problem with a f luid moving in opposite directions (see [22]). Given the domain
 m, a discontinuity is placed at the center x = 50 m of the interval. At the initial time the water height

is everywhere constant (hL = hR = 10 m), but the velocities are opposite (uR = –uL = 15 m/s). The self-
similar solution of this problem is schematically shown in Fig. 3. Here, the points x2 and x3 move in oppo-
site directions.

A dry bed appears in the domain  only if . Note that the velocity u has jump discon-
tinuities at the points x2 and x3. The analytical solution consists of two rarefaction waves and a dry-bed
area. The rarefaction wave on the interval  is described by the self-similar solution (see [25, 26])

Similarly, the solution in the domain  is described by the functions

The constants  and  are found using the initial conditions:
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The analytical solution of the problem is given by

The problem was computed up to the time  s. The parameters were specified as , ,
and  m . The computations were performed for two cutoff parameters,  m
and  m, to show the influence of ε on the numerical results.

Figure 4a shows the water height distribution at  s. The analytical solution is depicted by the solid
line. The numerical solutions for  cm and  cm are shown by squares and circles, respectively.
It can be seen that the numerical and analytical solutions agree well on nearly the entire plot. Figure 4b
presents the velocity distribution at the time  s. It can be seen that the position of the shoreline is more
accurate when  is smaller.

7. PERIODIC WAVE OVER A CONSTANT-SLOPE BOTTOM: 
COMPARISON OF THE NUMERICAL AND EXACT SOLUTIONS

This problem was used as a test one, for example, in [27], where the numerical solution was compared
with the exact solution, namely, with the Carrier–Greenspan periodic wave [28]. This solution is applied
as a benchmark to verify the ability of a numerical algorithm to simulate wave runup and rundown over a
sloping beach. Specifically, it allows one to verify the shoreline boundary condition.

According to [29], it is convenient to write the analytical solution of this problem in the dimensionless
variables
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The solution is written in implicit form as

The form of the solution suggests that the f luid is at rest at the time t = 0. Then there appears periodic
motion; its period is . Here,  is the dimensionless analogue of the long-wave
velocity . Therefore, the substitution of A yields the coordinate x and the velocity u at the moving
shoreline. For the indicated expression to be valid, it is necessary that A be bounded: .

The problem considered below corresponds to the following case: ,  m/s2, the
length of the domain is L = 20 m, and the slope angle is . The computational domain is
the interval [–100 m, 10 m]. The bottom has a constant slope: . The solution at t = 0 is used
as initial conditions. On the left boundary of the domain, we set time-periodic boundary conditions for h
and u obtained from the exact solution at  m.

The computations were performed for three mesh sizes:  m,  m, and  m.
The parameters of the numerical algorithm were specified as α = 0.2 and β = 0.1 for all mesh sizes. The
cutoff parameter was chosen according to (31). Since the bottom had a constant slope, three different val-
ues of  were chosen for three different steps, namely,  m,  m, and

 m.
In Fig. 5, the coordinate of the moving shoreline, which separates the inundated and dry areas, is plot-

ted as a function of time over three periods 3T. The period is . The exact solution is
depicted by the solid line, while the numerical solutions for  m,  m, and 
m are shown by dashed curves. In the plot, the mesh size  is denoted by hx.

Variations in the mesh size lead to variations in , but have a small effect on the position of
the moving shoreline. The variations associated with a decrease in the mesh size are noticeable only near
the peak values (see Fig. 5a). As the mesh size decreases, the numerical results approach the analytical
solution (see Fig. 5b).

Figure 6 shows the distribution of the velocity u at t = 5 s. It can be seen that the velocity has a discon-
tinuity near the moving shoreline. The analytical and numerical solutions are presented for three mesh
sizes: . The other parameters of the numerical algorithm are the same as in
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the preceding example: α = 0.2 and β = 0.1. Figure 6a displays the velocity distribution over the entire
interval [–100 m, 10 m], while Fig. 6b shows its fragment near the moving shoreline. The differences
between the numerical and exact solutions are noticeable only near the shoreline.

Figures 7 and 8 show the numerical results for u and  at three consecutive times: t = 15, 35,
and 50 s. It can be seen that the jump in velocity is smoothed out, but the numerical solution approaches
the analytical one with a decrease in Δx and a corresponding decrease in ε for all times.

8. NUMERICAL SIMULATION OF TSUNAMI WAVES

The numerical simulation of runup onto a beach for waves of various types, including tsunamis, is an
important f luid dynamics problem. In a number of cases, it can be solved on the basis of the SW equa-
tions [3]. The numerical results for two test problems presented in this section suggest that a promising
approach is based on regularized SW equations with boundary conditions added to describe moving dry-
bed areas. A characteristic feature of these problems is that the entire domain, waves, and wave–shore
interaction zones (where a dry bed is formed) have substantially different scales.

h bξ = +

Fig. 6. (a) Velocity distribution u at the time  s for three mesh sizes:  m,  m, and  m
and (b) a fragment.
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8.1. Tsunami Runup onto a Constant-Slope Beach
The formulation of the problem and analytical results to be used as a benchmark can be found in [30].

Specifically, these are data on the initial f luid distribution; analytical distributions of ξ and u at three times
t1 = 160 s, t2 = 175 s, and t3 = 220 s; and information on the shoreline motion over the time interval [0, 355 s].

The f luid distribution at  is presented in Fig. 9, which shows the free surface elevation 
and a sloping beach whose profile b has a constant slope angle γ ( ). Figure 9a shows the per-
turbation of the free surface elevation vs. coordinate. The computational domain is the interval [–500 m,
50000 m]. At the initial time , the water is at rest and a perturbation of the free surface elevation is
specified as the water height distribution on the interval [0, 50000 m]. The domain  is occu-
pied by a dry bed, where . The dry bed conditions are set on the left, and a constant water height h(x
= 50000 m) = 5000 m is held on the right.

Note that the horizontal and vertical scales are widely different. The f luid occupies a domain of 50 km,
while the difference between the maximum and minimum free surface elevations is 10 m, as can be seen
from in the figure. The shape of the free f luid surface is schematically shown in Fig. 9a.

The computations were performed on refined meshes with steps , 2, and 1 m. According to the
condition , three different mesh sizes corresponded to different values of ε. To demonstrate
the influence of the regularization parameter, we used two values,  and α = 0.4. The Courant
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Fig. 8. Profiles of the free surface elevation ξ at the times (a) t = 15 s, (b) t = 35, and (c) t = 50 s.
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Fig. 10. Shoreline coordinate as a function of time. The exact solution is depicted by the solid curve. The numerical solu-
tions obtained on grids with  m and  m are shown by dash-dotted and dashed curves, respectively.

0 100 50 150 

−150 

−100 

−50 

0

50

100

150

200

250

Xshore, m

200 250 300 350 
t, s

Аnalytical solution
hx = 5
hx = 1

5xΔ = 1xΔ =

Fig. 11. Velocity profiles  at the times t = 160, 175, and 220 s. 

(a) (b) (c)

−10

−5

0

−15 −4

−3

−2

−1

0

1

200 400 600 800

0

2

4

6

8
U U U

−2
100 300 500 700

x x x
−200 400 600

Аnalytical solution
hx = 5
hx = 1

Аnalytical solution
hx = 5
hx = 1

solution
Аnalytical

hx = 5
hx = 1

t = 160 s t = 175 s t = 220 s

u

Fig. 12. Perturbation of the free f luid surface  at the times t = 160, 175, and 220 s. 

−15

−10

−5

0
ξ ξ ξ 

200 400

−15

−20

−25

−10

−5

0

300 500 600 700 800400600 800
x x

5

10

15

00 600 800400200
x

solution
Аnalytical

hx = 5
hx = 1

solution
Аnalytical

hx = 5
hx = 1

solution
Аnalytical

hx = 5
hx = 1

(a) (b) (c)
t = 160 s t = 175 s t = 220 s 

ξ



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 4  2016

REGULARIZED SHALLOW WATER EQUATIONS FOR NUMERICAL SIMULATION 675

Fig. 13. (a) Water surface level in the input wave and (b) the bottom topography in the Monai Valley experiment.
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number was specified as . It was found that  is the optimal value for the given problem. The
plots presented below correspond to  and  and 1 m and compare the exact and numerical
solutions.

Figure 10 shows the shoreline coordinate for two mesh sizes as compared with the exact solution. The
exact solution is depicted by the solid curve. The numerical results for  and 1 m are shown by bro-
ken curves.

Figure 11 compares the numerical results and the exact solution for the velocity distribution at three
times t = 160, 175, and 220 s. In the plots of u, noticeable differences between the numerical and exact
velocities are observed in the jump zone adjacent to the shoreline. A similar effect takes place in an earlier
considered problem (see Fig. 7).

Figure 12 compares the numerical results and the exact solution for  at the same three times
t = 160, 175, and 220 s. On the presented scale, no differences can be seen between the exact and numerical
solutions on both grids.

The above figures suggest that the solution converges as the spatial grid is refined.
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Fig. 15. Comparison of the experimental surface elevations  measured at gages 5, 7, and 9 with numerical results: exper-
iment (solid) and numerical simulation (broken).
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Fig. 16. Three-dimensional f luid profile  and the bottom topography . Wave runup at the times t = 12, 14,
and 18 s.
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8.2. Tsunami Runup onto Beach of Complex Geometry
The problem of tsunami runup onto a beach of complex geometry is used to test the capabilities and

features of various numerical algorithms. Numerical results are compared with results of a laboratory
experiment. A 1 : 400 laboratory model based on actual bathymetry was constructed in the experiment.
The goal was to simulate the Okushiri tsunami, which occurred in Monai Valley in 1993. Its characteristic
feature was an extremely high runup of 31.7 m. The experiment was performed at Central Research Insti-
tute for Electric Power Industry in Abiko, Japan. The bathymetry data, initial and boundary conditions,
and experimental results can be found in [31].

A similar problem was considered in [22, 32]. In practical applications, it is important that numerical
results can be compared with laboratory experiments.

In the given problem, the computational domain is a rectangle 5.448 m long and 3.402 m wide. All the
sides of the domain, except for the left boundary, are solid walls. The level h on the left boundary is set by
the input wave (Fig. 13a). The bottom topography is shown in Fig. 13b, where the contour interval is 0.009
m. The maximum slope of the beach is not high (tanγ ~ 0.1), which makes it possible to use the SW
approximation.

The original bathymetry data were presented on a grid with a step of 0.014 m. This step was used for
computations on a rectangular grid with . The numerical parameters were specified as 
and . The computations were conducted up to the time t = 22 s. The cutoff parameter was specified
according to (32) with the coefficient .

The streamlines show a complex unsteady f low pattern. This can be seen in Fig. 14, which presents the
distribution of h together with streamlines at the times t = 17 and 18 s. The dry bed areas are shown in
white.

The numerical results were compared with experimental measurements of surface elevations made at
three gages numbered by digits 5, 7, and 9 (gage 5: (x, y) = (4.521, 1.196), gage 7: (x, y) = (4.521, 1.696),
and gage 9: (x, y) = (4.521, 2.196)). The numerical and experimental results are compared in Fig. 15. The
plots reveal that they are in good agreement. Note the coincidence of the peak values. The coincidence of
the maximum locations in time means that wave propagation and fluid disturbances are adequately
described by the model. The difference between the numerical and experimental results on short time
intervals can be eliminated by decreasing the cutoff parameter .

For illustrative purposes, Fig. 16 shows the three-dimensional water height distributions at three char-
acteristic times: t = 12, 14, and 18 s.

CONCLUSIONS
It was shown that the regularized shallow water equations and a numerical algorithm based on them

and supplemented with the well-balanced property and conditions ensuring the formation of dry-bed
areas provide a convenient and reliable tool for the numerical simulation of f lows associated with wave
motion in nearshore zones.
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