lqm }/)-’L}’&(M.Q/LOM %7)4/\-&7&\'30#\,%- on %oc,k \,,/gv-c@
Maredlle ( Ff‘l) 26 -Joé u-»[)j 1993 ' |

Quasi-gasdynamic equations and computer
simulation of rarefied gas flows

Elizarova T., Graur I., Sheretov Yu.

Institute for Mathematical Simulation, Russian Academy of Science, .
Moscow 125047, Miusskaya sq.,4,
State University of Tver, Tver 170000, Zelabov st., 38

1 Introduction

Quasi-gasdynamic (QGD) equations were constructed in [1], [2] starting from kinetical model for
distribution function. Computational algorithms, based on QGD model were called kinetical-
consistent finite-difference (KCFD) schemes. This schemes were successively used for creating
stable numerical methods for viscous supersonic flows [1], [2]. Now we consider QGD model as a
specific mathematical model for simulations of rarefied gas flows. The validity of QGD approach
is examined by numerical simulation of the static shock-wave structure.

2 Quasi-gasdynamic model

QGD equati9ns may be constructed by averaging the following model kinetical equation for dis-
tribution function [3]

fo+ (EV)F = (EVY)r(EV)f = TI(f, ) (1)

where f(Z, £, t) is the distribution function for a monoatomic gas, J(f, f') is the collision integral,
7 is a characteristic time of the evolution toward equilibrium (characteristic time for relaxation)
in a gas with macroparameters defined by function f. ’

An equation like Eq.1 was first constructed by the authors[1] using the known kinetical model
for the behavior of distribution function in a cyclically recurring process of the following type: *
Assume that at the time layer ¢ = ¢/ the distribution function is the locally- Maxwellian one
as f(x, 5", t) = f° Then during time interval 7 collision-free scattering of gas molecules occurs,
followed by instantaneous Maxwellization. Free-scattering step may be defined with the help of
the expression

fj+l(£’€’t)=f0j(f_£Ta§’t) (2)

Expanding (2) into a Taylor series in the parameter £ we obtain a model kinetical equation
close to Eq.1. Successively multiplying it by the summation invariants cp(a = 1,£,0.562 and
integrating over all molecular velocities £ we obtain the system of differential equations for the

macroparameters - QGD model [1], [2] . Note that, in obtaining the high-order moments to close
the system, we had to suppose that the distribution function is equal to a locally-Maxwellian one

.

In invariant form QGD system was written in [3] as

p + div(pit) = divr(div(pi ® &) + Vp) (3)




(pid). + div(pil ® @) + Vp = | (@)
= divr(div(pi ® & ® @) + (V & piZ) + (V ® p@)T) + Vrdiv(pi),

E, + div((E + p)i@) = divr(div((E + 2p)@ ® @) + V(p(E + p)/p)). (5)
By adding to Egs. (3) - (5) the equation of state of an ideal gas

E =p(@®/2+¢), e=p/p(y—1) . (6)

and, also, adding the initial and boundary conditions, we obtain a closed system of equations

which describes the space-time evolution of the macroscopic parameters of the gas: u - velocity,

p - density, p - pressure, E - energy. As discussed in [4], the transport phenomena appear in the
equations through the characteristic time 7.

In the papers of Sloskin [5], Vallander [6], Alexeev [7], Klimontovich, [8] new equations of
gas-dynamical type, usually called generalized NS equations, were constructed based on different
hypotheses. These models differ from NS model and from Eqgs.(3) - (5) by the structure of the
second order differential terms.

For a monoatomic gas the numerous relations between QGD and Navier-Stokes equations have
been established in [3] and [10]. It was shown [3] that in stationary form QGD system of equations
differs from NS one by the additional terms, having the orders of O(7?) accuracy. The boundary
layer approach for QGD system coincides with Prandtl’s one with viscosity and heat conductivity
coefficients in the form

fe= pr and & = ¢,pT = Cyfi- (7)
, .
For QGD system the entropy equation was constructed in [3], [10], the suggestion about a rise

of full thermodynamic entropy function for adiabatically isolated systems was proved. Moreover,
in [9] it was proved that the full increase of entropy function in a shock wave is strongly positive.

If the second-order differential terms in Eqs.(3) - (5) are dropped, QGD equations reduce
to NS equations and 7 now receives a physical meaning. By identification, it can be related to
the usual viscosity coefficient by 7 = u/p or to the thermal conductivity by 7 = &/(¢,p). Both
definitions are consistent only for a Prandtl number equal to unity (Pr = 1).

3 Shock-wave problem

For plane 1D case QGD system writes

o opu_0 0 .
ot t s = 5 5t TP ()
0 0 0
O 1 2 (o +p) = oo an(ou® + 3pu) (9)
BE 0 i 9, v ,0p 0p yPr~t 9 dp
6t u(E+p) "5 u(E+ )+ 1(6:1:/) oz vy—-1 6xp76a:p) 28]

To ensure consistency with the actual gas viscosity, 7 should be taken equal to p/p (Eq.7). In
energy equation (Eq.10), the NS-like term responsible for heat- conduct1v1ty, has been corrected
by introducing Prandtl number Pr. -

Using Bird’s relation between viscosity and mean free path [12]




)= © y 2(7 - 2w)(5 - 2w) ' (11)

" pV27RT 15

and the equation of state p = pRT, we get

A 1527 15
VET 207 = 20)(5 — 20) (12)

Eq.11 is a generalization of the usual expression for a hard-sphere gas (u o< T%/2) to a Variable
Hard Sphere (VHS) gas whose viscosity law is g o< T%. Realistic values of w fall between 0.5 and
i

To solve the system of Egs. (8) - (10) it is convenient to rewrite it in a non-dimensional form by
introducing scaling quantities for all dimensional variables. The corresponding scaling quantities
are taken in the free stream region: mean free path );, density p;, sound velocity a, = \/yRTj,
temperature T;. As a mean free path we chose the mean free path for the hard-sphere gas w = 0.5
as it i1s accepted in shock-structure computations
1 16
A= —— X — 13
/ ' pV2rRT, 5 : (13)

So we have the following relations between adimensional and dimensional variables (“tilda”
refers to dimensionless quantities)

T =

p = pp1, P=ppras’, T =TT, a=aa, ¢ =&\,

t={)\1/al, u:&al, TZ%)\l/al, EZEP1012 : (14)

After introducing adimensional values the form of the Egs. (8) - (10) will not be changed.
Below we will drop the sign “tilda”. State equation, sound velocity and relaxation time write
respectively

p=pT/7,a=\/f,andT=:—px% 27. (15)

As initial and boundary conditions we used Hugoniot relations.

A finite-difference scheme was constructed based on the dimensionless form Eqs.(8) - (10),
(15) with space accuracy of the order O(h?) (centered scheme). The steady-state solution was
been obtained as the limit of a time-evolving process. The time step was defined from the
Courant stability condition At = aminh/maxV where V = a + V@2, Coefficient a was chosen
experimentally and was equal to ~ 0.01 in all computations with A = 0.5. The computation
was stopped when the steady-state solution was achieved according to the criteria ¢ < 0.01 with
e= 1y X4
TN At

Some results for this test-problem have already been presented in [11].

The computational space step was smaller than the mean free path (h < 1). Furthermore the
condition for the time step results in At < 1, which means that the time step is much smaller
than 7 and the mean molecular collisional time (both of them being of the order of \;/a;). This
was not the case when kinetical-consistent finite-difference (KCFD) schemes were constructed
[1],[2]. Although based on the same formalism, KCFD schemes did not aim at solving the same

physical problem as the present GQD equations.
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4 Numerical results

It is known that the solutions of shock-structure problems based on Navier-Stokes equations and
others moment models disagree with experimental data and with the results of direct statistical
model calculations (DSMC) for Mach numbers M > 2. Particularly, NS equations result in the
shock width and the distance between density and temperature profiles being too small. The
shock-structure problem is a severe test for macroscopic approaches because of large Knudsen
numbers (Kn ~ 0.3).

Figure 1 shows normalized density, temperature and velocity profiles for the case M =3, vy =
5/3, w = 0.5 for QGD (solid line) in comparison with S-model simulations (dashed line) [13].
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We have also plotted NS results (dashed line with stars) that we have obtained using the same
numerical procedure as QGD results after removing the additional terms. It is known that for
low Mach numbers, S-model computations concord well with the DSMC data. A rather good
concordance is observed between QGD and NS density profiles and QGD and S-model velocity
profiles. ‘

Fig.2 shows the case M = 8, v = 5/3, w = 0.5 for QGD (solid line) in comparison with
computations based on conservative scheme in splitting form for kinetical equation (dashed line)
[14]. In Fig.3 is shown the variant for M = 8, v = 5/3, w = 0.816 for QGD and S-model [13]
computations (dashed line). For high Mach numbers, QGD profiles do not concord well with the
data obtained directly from kinetical models. Particularly, the temperature profile approaches
its asymptotic value behind the shock more slowly than for refereed data. Better results have
been obtained when we took 7 in Eq.8 and in two terms in right hand of Eq.10 according with
heat-conductivity k£ and in all other terms - according with viscosity u. Unfortunately, this way
may disturb the dissipative characteristics of QGD system.

Numerical experiments have shown that for a given explicit scheme, the number of time steps
required for convergence was 3 - 4 times less for QGD equations, than for the same variant based
on NS equations. For example the number of iterations to compute a M = 3 shock wave is
12.102 for QGD, and 82.10° for NS. For M = 5 the corresponding numbers are 40.10° and 143.10°
respectively. In the latter case, oscillations in density profiles appear in NS calculations before
the shock front. For M=8 we have not got the converged NS solution and could not compare it
with QGD results.

Adimensional inverse shock thickness (X;/8) vs Mach number is presented as a solid line in
Fig.4 for Pr = 2/3, v =5/3, w = 0.5. For comparison the data for kinetical model [14] has been |
also plotted as [ , as well as the solution of NS equations (plotted as *) obtained by the authors |
after having removed additional terms from QGD equations. Shock thickness results obtained
by GQD equations differ only little from those obtained by NS equations. We came to the same
conclusion for a VHS -gas (w = 0.72).

The results obtained by QGD and NS models for small Mach numbers are particularly close to
one another, (especially for density and velocity profiles). In other words in spite of the distinction
in the structure of dissipative terms and the presence of self diffusion in QGD model, the QGD




and NS solutions are rather close not only for smooth functions as it was shown in 3], but also
in the case of functions with sharp gradients.

In conclusion, QGD model, like NS one, approximately describes the profiles of gasdynamic
parameters in a shock wave for low Mach numbers. For high Mach number flows, the results
obtained by QGD and NS equations remain close to one another but computations based on
QGD equations are much more stable. This is an important feature for the creation of numerical
algorithms for 2D and 3D supersonic flow problems.
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