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Abstract—Regularized equations for binary mixtures of viscous compressible gases (in the absence of
chemical reactions) are considered. Two new simpler systems of equations are constructed for the case
of a homogeneous mixture, when the velocities and temperatures of the components coincide. In the
case of moderately rarefied gases, such a system is obtained by aggregating previously derived general
equations for binary mixtures of polyatomic gases. In the case of relatively dense gases, the regularizing
terms in these equations are subjected to a further substantial modification. For both cases, balance
equations for the total mass, kinetic, and internal energy and new balance equations for total entropy
are derived from the constructed equations; additionally, the entropy production is proved to be non-
negative. As an example of successful use of the new equations, the two-dimensional Rayleigh–Taylor
instability of relatively dense gas mixtures is numerically simulated in a wide range of Atwood numbers.
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INTRODUCTION
Most gaseous substances found in nature are mixtures of different gases, so the description of f lows of

gas mixtures is clearly of interest to researchers. There is a wide variety of mathematical models for
describing f lows of mixtures of compressible gases [1–5]. Even wider is the variety of numerical algo-
rithms intended for computer simulation of such flows. New approaches to the numerical simulation of
mixture f lows are of both theoretical and practical interest. In this paper, we describe and test a new
approach of this kind.

A mathematical model frequently used to describe f lows of gas mixture is an Eulerian-type model of a
homogeneous mixture consisting of mass balance equations for each of components of the mixture,
together with balance equations for momentum and total energy of the mixture as a whole (rather than of
individual components). Various numerical methods can be used to implement this model. The mutual
diffusion of the gases involved is not taken into account in these mathematical models and numerical
methods (see, e.g., [5]). Accordingly, special algorithms for describing the boundary between the species
of the mixture are applied, if necessary. Models taking into account diffusive mass f luxes for the species
of the mixture can be found, for example, in [2–4].

A model kinetic equation was used in [6, 7] to construct a regularized or quasi-gasdynamic (QGD),
system of equations for describing f lows of binary gas mixture (for more detail on QGD models of one-
component gases, see [7, 8]). It was assumed that each component of the gas mixture has its own density,
velocity, and temperature. In the absence of chemical reactions (cold gas approximation), there were no
exchange terms in the mass balance equations for the components, while the momentum and total energy
balance equations for each components contained such terms, which described the interaction between
the components of the mixture. The form of the exchange terms was based on that in kinetic equations,
and the gases were assumed to be monatomic. Therefore, these QGD equations for mixtures were
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intended for describing simple monatomic gases. This system of equations was tested by computing one-
dimensional rarefied gas f lows, namely, the problem of a stationary shock wave and the gas f low between
two tanks. The results were compared with those based on direct simulation Monte Carlo computations
[9] and were found sufficiently accurate. Additional applications were given in [10].

These equations were used in [7] to construct a homogeneous (one-fluid) approximation, assuming
that all components of the mixture have identical velocities and temperatures. Moreover, the adiabatic
exponents  and the Prandtl numbers  of the components were also assumed to be identical and the
internal energy of the mixture was not introduced in explicit form. The performance of this model was also
tested as applied to the same two problems.

In [11] the exchange terms in the QGD system were generalized to the case of polyatomic gas f lows
with arbitrary  and . Additionally, the QGD equations for a gas mixture were written in a different
form that is more conventional for gas dynamics, which is especially convenient for their subsequent dis-
cretization. It was also shown in [11] that the QGD system for a gas mixture satisfies the total energy con-
servation law and has a nondecreasing total entropy. A physical interpretation of the proposed generaliza-
tion of the exchange terms was given in [12].

The application of the complete QGD system to f low simulation for mixtures of rather dense gases
showed that, with an increasing number of intermolecular collisions, the exchange terms in the equations
grow rapidly, which means that the temperatures and velocities of the components quickly equalize and
there is a possibility of passing to a homogeneous mixture in the model. Moreover, the use of the complete
QGD system led to computational instability, so the homogeneous model seems preferable from both
physical and computational points of view.

In this paper, firstly a system of equations for a homogeneous binary mixture of polyatomic gases is
constructed by aggregating the equations from [11]. The resulting model has the following properties: nat-
ural formulas (involving the component concentrations) hold for the specific heat capacities, the adiabatic
index, and the total pressure of the mixture; the mass balance equations for each component involve reg-
ularizing diffusive f luxes for the components of the mixture; natural balance equations for the total mass
and total kinetic and internal energy of the mixture are satisfied; they are used to derive a new balance
equation for the total entropy of a binary gas mixture with a nonnegative entropy production (Theorem 1); this
model is quite easy to implement numerically by using the corresponding implementation of the one-
component gas model; and the model can be naturally generalized to a larger number of gas components
in the mixture.

However, attempts to use this model in numerical simulation of homogeneous binary mixtures of rel-
atively dense gases, for example, in the Rayleigh–Taylor instability problem have revealed a rather high
numerical diffusion in the component mass balance equations caused by the large jumps in the compo-
nent pressure. Accordingly, the regularizing terms in all equations of motion for such gas mixtures were
substantially modified. As a result, another regularized system of equations for a homogeneous binary
mixture was constructed for the case of relatively dense gases. Note that this modification has some ele-
ments similar to a substantially simpler (than in this paper) quasi-hydrodynamic regularization in f low
problems for a binary (i.e., two-component) mixture under small variations in total density, but with addi-
tional allowance for interphase effects (described by the Navier–Stokes–Cahn–Hilliard equations for a
compressible f luid) [13, 14]. The second system of equations constructed in this paper mainly preserves
the above-noted properties of the first one, but involves only total regularizing diffusive f luxes. It should
be emphasized that the total entropy balance equation for the mixture again holds together with a non-
negative entropy production (Theorem 2). Note that the equation itself differs substantially from its coun-
terpart in the first system of equations. The indicated property is of key importance, since it ensures the
physical consistency of the model. It was not simple to achieve this property in such a regularization for
mixtures.

The simulation of Rayleigh–Taylor instability arising in the gravity field at the interface between a
heavy and a light gas (the latter being beneath the former) is often used as a test in order to analyze the
properties of mathematical and numerical mixture models. Another type of test problem is Richtmyer–
Meshkov instability arising when a shock wave propagates through the interface of two gases. Both types
of instability were extensively overviewed in the recent paper [15]. A numerical study and a detailed anal-
ysis of results concerning Rayleigh–Taylor instability for compressible gases can be found in [16]. In this
work, we focus on gravitational instability, including examples like those presented in [16]. An important
point is that various binary mixtures are numerically simulated in the entire range  of the Atwood
number, which characterizes the difference in the molecular weights of the components in the mixture.
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1. REGULARIZED EQUATIONS OF MOTION FOR GENERAL AND HOMOGENEOUS 
BINARY MIXTURES OF MODERATELY RAREFIED GASES

1.1. Following [11], the regularized QGD system of equations for a binary mixture of moderately rar-
efied gases consists of the following mass, momentum, and total energy balance equations for gases

:

(1.1)

(1.2)

(1.3)

Here and below,  and  denote partial derivatives with respect to  and ; the operators  and  are
taken with respect to the spatial coordinates , where  (the divergence of a tensor is
taken with respect to its first index); and  and  denote the tensor and scalar product of vectors, respec-
tively.

The basic sought functions are , , and , i.e., the density, velocity, and
absolute temperature of gas , which depend on . Additionally, we deal with the total energy, pres-
sure, and specific internal energy of gas , which is assumed to be perfect and polytropic:

(1.4)

Here,  is a constant, where  is the universal gas constant and  is the molecular
weight, and  is the specific heat at constant volume. The pressure can also be written as

where  is the adiabatic index and  is the specific heat at constant pressure.

In these equations,  is the viscous stress tensor, where  is the classical Navier–
Stokes viscous stress tensor:

(1.5)

with dynamic viscosity , bulk viscosity , and unit tensor  (of order ).
Additionally,

(1.6)

is a regularizing tensor. Note that, in the last formula, , where  is the
squared speed of sound of the component . The quantities  and  are the body force density and
the heat source strength, which are assumed to be given, and  is a relaxation parameter that may
depend on all the sought functions , ,  and , , .

The quantities  and  are exchange terms; they depend on all sought functions and relate the
equations for the gases  and . They are such that

(1.7)

Expressions for  and  can be found in [11] (see also the physical motivation in [12]). In what fol-
lows, they are not used and, for this reason, are omitted.

The regularizing velocities  and  are given by

(1.8)

where  is the mass f lux density of gas .
The heat f lux  can be expressed by the formulas

(1.9)

a bα = ,
div[ ( )] 0t α α α α∂ ρ + ρ − = ,u w
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(1.10)

where  is the thermal conductivity and  is a regularizing heat f lux.
The regularized equations can involve physical or artificial viscosity and thermal conductivity coeffi-

cients. The artificial coefficients are usually given by the formulas (see [7])

(1.11)

where  and  are the Schmidt and Prandtl numbers of the component , respectively.
The above-presented system of regularized equations for a binary mixture is rather complicated and

contains  sought scalar functions , , and  for . Therefore, simplified
models of a binary mixture f low are of practical interest.

1.2. For a homogeneous binary mixture, we set  and  (see [1]). Additionally, let
. The equations of motion for a such mixture are derived by aggregating the equations written

above for . The mass balance equation (1.1) is rewritten as

(1.12)

by setting

the quantity  will be used later.
Introducing the total density  and the total pressure  and summing the momen-

tum balance equations of form (1.2) with  and  over , we obtain the follow-
ing aggregated momentum balance equation of the homogeneous mixture:

(1.13)

Here, the total regularizing velocities and the terms in the viscous stress tensor  are given by

(1.14)

(1.15)

(1.16)

with ; here, we took into account the important (though obvious) property that the regular-
izing momenta are additive:

(1.17)

The total specific internal energy and the total heat capacity at constant volume are defined as

(1.18)

Summing the total energy balance equations of form (1.3) with  and  over ,
we obtain the following aggregated total energy balance equation of a homogeneous mixture:

(1.19)
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Here, the total energy, heat f lux, and its regularizing component are given by the formulas

(1.20)

(1.21)

where we took into account the additivity of , , , and . The exchange terms in Eqs. (1.13) and
(1.19) canceled out by virtue of properties (1.7).

The derived system of regularized equations for a homogeneous binary mixture is much simpler than
the original system and contains only  sought scalar functions , , , and .

Additionally, the total heat capacities at constant pressure, gas constant, and adiabatic index can be
introduced using the formulas

(1.22)

Then  and, hence, other natural formulas hold for the pressure of the mixture

(1.23)
To avoid misunderstanding, the following remark has to be made: although the formulas for a homoge-
neous binary mixture are similar in form to the equations of state of a homogeneous perfect polytropic
gas, the quantities , , , and  in the former are not constants, but rather functions of the component
concentrations  and .

In (1.16) and (1.19), we can use the formulas

(1.24)

(1.25)

Here,  plays the role of the squared speed of sound of the mixture.
Note that, in the aggregation procedure, some quantities are taken additively, i.e., they are summed up

(e.g., , , etc.), while others are taken as linear combinations with concentrations  used as weights
(e.g., , , etc.).

For control of the result, we note that, in the simplest case of gases with identical  and , we have

As a consequence,  and, in view of formulas (1.17), the total energy balance equation and the
expression for  take the standard form for a one-component gas:

cf. (1.3) and (1.10) (here,  and  involve the total viscosity and thermal conductivity coefficients).
For  (without using formulas (1.11)), the resulting system (1.12), (1.13), (1.19) turns into the

Navier–Stokes-type equations for the binary mixture:

(1.26)

(1.27)

(1.28)

where , , , and  were introduced above. If , then we obtain a
system of Euler-type equations for the binary mixture, namely,
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From the obtained regularized equations, we derive a set of consequences of standard type. Adding
Eqs. (1.12) over  and taking into account the additivity of  and  yields the natural total density bal-
ance equation

(1.29)

It can be used as an equivalent substitute for one of the component mass balance equations in (1.12). This
substitution is often used for numerically solving of such systems of equations.

Taking the inner product of the momentum balance equation (1.13) and  and applying the product
rule and Eq. (1.29), we derive the kinetic energy balance equation

(1.30)

Subtracting the last equation from the total energy balance equation (1.19) and taking into account the for-
mula  lead to the internal energy balance equation

(1.31)

where  and  denotes the scalar product of tensors.

The entropies of the species  and the mixture are defined as

(1.32)

where . Let .
Theorem 1. The following regularized entropy balance equation for a homogeneous binary mixture of mod-

erately rarefied gases holds:

(1.33)

with entropy production , where

(1.34)

(1.35)

moreover,  if  for .
Proof. Clearly, taking into account the additivity of  and using the component mass balance

equation (1.12), we have

(1.36)

Using the definition of  and applying Eq. (1.12) twice yield

(1.37)
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Using the internal energy balance equation (1.31) for the mixture, applying the formula

and performing the deaggregation of some of the above-introduced total quantities, we derive

where

As it is easy to see,  can be rewritten in the form of (1.34). Additionally,  can be simplified to

It is well known that this expression can be transformed into the form of (1.35); for , see, for
example, [7] and the short derivation in [17, Proposition 2]. The case  is treated in the same manner
as in [18] (see also the proof of Theorem 2 below).

The derived entropy balance equation makes the constructed model physically correct. Moreover, it
looks as if this model was obtained by summing the entropy balance equations for the species with 
at  and  (cf. [11, Theorem 1]). Of course, this is not the case, since, for a homoge-
neous binary mixture, the momentum, total energy, and entropy balance equations for individual compo-
nents are no longer satisfied.

Let us discuss the nature of the regularization in the constructed equations. The component mass bal-
ance equation (1.12) involves the nonaggregated regularizing momenta , which depend only on the
density and pressure of the same component. By contrast, the momentum balance equation (1.13) and the
total mass balance equation (1.29) involve only the total regularizing momenta  and . Moreover, in
the formula for  (see (1.16) and (1.24)), the squared speeds of sound for the species can be regarded as
aggregated in combination with the use of the total density. The convective terms of the total energy bal-
ance equation (1.19) (and the total entropy balance equation (1.33) as well) contain nonaggregated regu-
larizing momenta  and  (see also (1.25)). In formula (1.21) for , the quantities  are aggre-
gated (to produce ) and the quantities  are summed.

Note that regularized equations for a homogeneous binary mixture can also be constructed by applying
procedures different from the one described above. Instead of aggregating the regularized equations of the
(whole) binary mixture, we can try to construct such equations by applying the binary-mixture Navier–
Stokes type equations (1.26)–(1.28), including by analogy with the procedures from [19] or [20] used in
the case of a one-component gas. They even yield a simpler (than (1.25)) regularizing expression on the
left-hand side of the total energy balance equation (1.19) for the mixture, but fail to ensure a nonnegative
entropy production in the entropy balance equation for the mixture.

An additional important feature of the above-described aggregation method for deriving equations of
a homogeneous binary mixture is that the resulting equations are easy to implement numerically if there
is a software code for the corresponding equations of a one-component gas. For illustrative purposes, sup-
pose that the latter equations are solved numerically by applying an explicit Euler method of the form

where  and  are the values of the sought functions at the current and next time levels;

;  is the time step; and  is the vector consisting of the gas parameters , , , 

and function . Here, , , and  are approximations, at the current time
level, of all terms of the mass balance, momentum, and total energy equations, respectively, except for the
terms involving time derivatives.
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Then the explicit Euler method as applied to the constructed equations of a homogeneous binary mix-
ture can be written as

where  and  is the value of the parameter vector for the gas . The unknowns  at
the new time level are easy to find sequentially from the formulas presented above. Here,

 and .

Note that the addition of the first two formulas gives

which corresponds to an approximation of the total density equation (1.29).

2. REGULARIZED EQUATIONS FOR A HOMOGENEOUS BINARY MIXTURE
OF RELATIVELY DENSE GASES

Presented at the beginning of Section 1, system (1.1)–(1.10) for describing f lows of a inhomogeneous
binary mixture can be used to compute f lows of moderately rarefied gases (see [6, 7, 10]). However,
numerical simulations show that, as the gas density grows, which is accompanied by an increase in the
number of molecular collisions for individual components, the exchange terms in this system increase very
rapidly, which leads to the instability of the numerical algorithm. For such flows, we can use the equations
constructed in Section 1 for a homogeneous binary mixture, namely, Eqs. (1.12)–(1.16), (1.18)–(1.21).
However, these equations become invalid as the Knudsen number is reduced, since the pressure gradients
of the individual components increase near the interfaces between the species.

For this reason, for simulation of f lows of relatively dense homogeneous binary gas mixtures, in this
section we construct an alternative regularized model in which, in contrast to the other two systems
described in Section 1, the regularizers involve the pressure and density of the entire mixture, rather than
the pressures and densities of its components. Note that the use of a single regularizing mixture velocity 
was proposed in [13] and was successfully implemented in [14] in 3D isothermal computations for a sub-
stantially simpler (than in this paper) quasi-hydrodynamic regularization intended for f lows of binary
mixtures under small total density variations, but with additional allowance for interphase effects
(described by the Navier–Stokes–Cahn–Hilliard equations for a compressible f luid).

The regularized (QGD) equations for a homogeneous binary mixture of relatively dense gases are con-
structed as follows. The mass balance equation (1.12) for components is modified by substituting 
for . The same substitution is made in the total energy balance equation (1.19) for the mixture. Addi-
tionally, the regularizing terms in the momentum balance and total energy equations for the mixture are
modified so that the entropy balance equation for the mixture holds true with a nonnegative entropy pro-
duction (this is a nontrivial task in the present model). Specifically, the regularized equations for a homo-
geneous binary mixture of relatively dense gases are given by

(2.1)

(2.2)

(2.3)

Here, as before, , , , and we use formulas (1.18) for . Note that

Eq. (2.3) contains a new regularizing term with the difference of the gas constants, , and
with the concentration  of the component . Additionally, we use the previous regularizing mix-
ture velocities

(2.4)
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the viscous stress tensor , and the heat f lux  with the following mod-
ified regularizing terms:

(2.5)

(2.6)

where, as before, , , and  are given by formulas (1.18) and (1.22). All three terms in (2.5) with the ten-
sor  used as a factor and the term  in (2.6) are also modified. According to the modified term

, the speed of sound in the mixture is now computed using the conventional formula
. In the special case of , the term with  in Eq. (2.3) vanishes and, as usual, we

obtain  in (2.5).

Adding the new density balance equations (2.1) for the species over  leads, as before, to the total
density balance equation (1.29). Therefore, the kinetic energy balance equation (1.30) for the mixture also
preserves its form.

Subtracting the last equation from the total energy balance equation (2.3) for the mixture yields the fol-
lowing internal energy balance equation for the mixture:

(2.7)

The entropy of the mixture is given, as before, by formulas (1.32).
Theorem 2. The regularized entropy balance equation for a homogeneous binary mixture of relatively dense

gases is given by

with entropy production , where  is defined by formula (1.34), and , by the formula

(2.8)

moreover,  if  .
Proof. Owing to the additivity of  and the new mass balance equation (2.1) for species, in perfect

analogy with (1.36) and (1.37) (omitting the superscripts of , , and ), we obtain

From this, taking into account the additivity of  and  and using the internal energy balance equa-
tions (2.7) for the mixture, we derive

where, by virtue of the formula ,
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With the help of the formulas

where we took into account that  (see (1.23)), we perform the following transformations in order
to generate partial quadratic terms:

Next, by sequentially applying the formulas

where we took into account that  (see (1.22)), and using the formulas

and  (see (1.23)), the generation of quadratic terms is completed as follows:

Formula (2.8) has been derived, and the theorem has been proved.
Let us discuss a substantially simpler quasi-hydrodynamic regularization (which is also easier to com-

pare with [13]) that also can be used in applications, but for a much narrow class of f lows at moderate
Mach numbers. The corresponding system of equations involves only one regularizing velocity 
(see (2.4)) and has the form

Here, , but the regularizing viscous stress tensor is much simpler: , while the
heat f lux does not contain a regularizing term at all: .
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Table 1. Gas parameters

Gas  (Pa s)

Helium He 5/3 0.67 4.003
Air 7/5 0.715 28.96
Argon Ar 5/3 0.669 39.91657
Ozone O3 4/3 0.9 47.998
Sulfur hexafluoride SF6 1.0937 0.736 146.0554

γ μ Prα M
−× 51.86 10
−× 51.71 10
−× 52.26 10
−× 51.55 10
−× 51.57 10
For this system, the entropy balance equation for the mixture is much easier to derive and is much sim-
pler in form:

once again, the entropy production is .

3. NUMERICAL SIMULATION OF HOMOGENEOUS BINARY MIXTURES OF RELATIVELY 
DENSE GASES IN THE RAYLEIGH–TAYLOR-TYPE PROBLEM

By applying the equations derived in Section 2, the instability of a homogeneous binary mixture of rel-
atively dense gases was simulated in two dimensions (in coordinates ) under the gravity field

 (where  m/s2 is the acceleration of gravity) in a domain of width  m and
height  m. The interface between two gases was initially along the line  with the heavier gas
occupying the upper part  of the domain and with the lighter gas being in the lower part

.
The gas parameters used for the simulation are given in Table 1. The viscosity and thermal conductivity

coefficients were specified as , , and . Recall that  is the uni-
versal gas constant and  is the molecular weight of a gas.

A difference approximation of the equations was constructed according to [7]. The regularization
parameter and the time step were computed using the formulas

where  is the speed of sound of the mixture,  and  are the mesh sizes in  and , and
the minimum is taken over all nodes of the spatial grid. Here,  and  (Courant number) are parameters
from the interval .

Initial conditions. The initial state of the gas at the time  was determined by the hydrostatic equi-
librium under the adiabatic assumption:  and . For it, the dependences of the density and
pressure of the gas species on the height  were specified by the formulas

(3.1)

where . Relying on them, the temperature  was computed using the state equations of
the gases. For , we specified normal atmospheric parameters, namely,  Pa
and  = 273 K, which were used to compute the densities  and  according to the state equations of
the gases. Note that the values of , , and  differed weakly from the their indicated values at

.
In the part of the domain where one of the gases was nearly absent at the initial time, its density was set

to a small value of .
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Fig. 1. Density of an Ar–O3 mixture with  at the times , 0.2, 0.3 for a grid of 125  400 nodes.
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To initialize the process, an x-symmetric oscillating perturbation of vertical velocity with a large ampli-
tude was specified near the interface of the gases, namely, , where .

Note that the values of the molecular weights  have to taken with a sufficiently high accuracy, so that
the hydrostatic equilibrium conditions for both gases at  are satisfied with appropriate accuracy. Oth-
erwise, the gas layers begin to move immediately.

Boundary conditions. On the vertical (lateral) and lower boundaries of the computational domain, we
set the impermeability and slip conditions

where . Additionally, we set  to ensure the mass impermeability of the lower wall.

On the upper boundary of the domain, we specified the free atmosphere condition for pressure, drift
for density and velocity, and no heat f lux for temperature:

where  is found at  according to (3.1). These conditions allow solution perturbations to leave the
computational domain through the upper boundary.

Numerical results. The computations were performed for three mixtures (pairs) of gases frequently
considered in the literature (see, e.g., [15, 16]) with the Atwood number 
equal to 0.091, 0.57, and 0.947, i.e., all characteristic values of , including the most complicated regime

, were covered.
Figure 1 shows the distributions of the total density  for the Ar–O3 mixture with  at three

characteristic times  s. The mixture temperature and the component densities are mainly
similar to the mixture density distributions, so they are not shown for brevity.

It can well be seen that the ascending light-gas bubbles and descending heavy-gas bubbles have mush-
room shapes; moreover, their edges are curved inside and become thinner over time. The fine structure of
the developing structures suggests that the numerical algorithm has a very low artificial viscosity.
An advantage of this algorithm is that the symmetry of the numerical solution with respect to  is main-
tained to high accuracy.

It is also well seen that acoustic disturbances are formed in the gasdynamic fields of the light and heavy
gases in the course of their evolution.
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Fig. 2. Density of the Ar–SF6 mixture with  at the times , 0.15, 0.2 for a grid of 125  400 nodes.
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Additionally, the temperature distributions (not shown) exhibit higher temperature zones near the
boundaries of the bubbles, which are associated with the heating of the light gas caused by its compression
in the emerging structures.

Over time, the gravity-based gas mixing process exhibits a progressively more complicated pattern with
finer details and vortex structures appearing in it. Eventually, these new details become comparable in size
with the spatial mesh size, which leads to the termination of the computation.

Since the Rayleigh–Taylor problem is unstable, the results of its simulation depend strongly on numer-
ous parameters, including the Atwood number, the adiabatic indices  and , the shape and type of the
initial perturbation of the data, a particular moment of time, etc. Therefore, the results can be only qual-
itatively compared with data of other authors. Nevertheless, we can note that the computed density fields
are typical for problems of this type; specifically, they are similar to the fields at  presented in [16].

The basic computations were performed on a mesh of 125  400 nodes with the parameters  and
. Note that their values were not optimized in these computations, so, possibly, the artificial dissi-

pation coefficient  can be reduced, while the Courant number can be increased.
Figure 2 presents the numerical results obtained for an Ar–SF6 mixture with  at the times

 s. A comparison with the preceding computation shows that the overall picture of insta-
bility development is generally preserved. However, with increasing , mushroom bubbles are generated
more intensively, the acoustic disturbances increase in value, the descending bubbles of the heavy SF6 gas
become narrower, and thin jets develop over time whose upper parts tend to shed from the basic f low to
form separate drops. Moreover, the ascending light-gas bubbles become wider. These bubble shapes agree
with the data available in [5, 15, 16].

The additional results obtained for the air–SF6 mixture with  were found to be overall similar
to the last data, so they are omitted.

The numerical results obtained for the He–SF6 mixture with  are presented in Fig. 3.
We can see intensive development of instability. Ascending mushroom bubbles and zones of a descending
heavy gas are formed at a significantly higher rate than in the case of smaller . For this reason, the mix-
ture density distributions are shown at earlier times, namely, at  s. Note that the com-
putation of such problems faces serious difficulties because of the huge difference in the gas densities and
the high rates of the processes involved.

It can be seen that the heavy gas SF6 rapidly sinks into the zone of light helium with the formation of
downward jets of SF6. Additionally, mushroom-shaped structures emerge at the ends of the heavy-gas jets,
and the latter tend to split to form drops.

aγ bγ

0 1At = .
× 0 2α = .

0 3β = .
α

0 57At = .
0 1 0 15 0 2t = . , . , .

At

0 66At = .

0 947At = .

At
0 06 0 10 0 12t = . , . , .
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Fig. 3. Density of the He–SF6 mixture with  at the times , 0.10, 0.12 for a grid of 125  400 nodes.
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Fig. 4. Density of the Ar–O3 mixture of with  at the times , 0.2, 0.3 for a grid of 60  200 nodes.
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The temperature isolines exhibit rapid heating of helium due to its compression caused by the influ-
ence of the heavy gas playing the role of a piston. At larger , the formed heavy-gas bubbles interact with
the lower boundary of the domain and the f low pattern ceases to be typical for the gravitational instability
problem. These computations were performed again on the mesh of 125  400 nodes at  and
smaller .

To analyze the dependence of the numerical solution on the spatial mesh size, Figs. 4 and 5 show the
results obtained for the first version of mixture (i.e., for Ar–O3) with  at the same times

 s for grids of 60  200 and 250  800 nodes, respectively. The results demonstrate that the
characteristic features of the f low are resolved even on the coarse grid, except for the specific curved
boundaries of the mushrooms, since this boundary contains only one or several grid cells. Under mesh
refinement, additional finer details can be observed in the formation of mushroom structures. Addition-
ally, the structures of the twisted f lows obtained on the fine mesh are more roundish and have more spiral
turns than in the f low pattern obtained on the coarser mesh.

t

× 0 4α = .
0 03β = .

0 091At = .
0 1 0 2 0 3t = . , . , . × ×
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Fig. 5. Density of the Ar–O3 mixture with  at the times  for a grid of 250  800 nodes.
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4. CONCLUSIONS
To describe f lows of inhomogeneous binary mixtures of nonreacting gases, regularized equations were

presented taking into account momentum and energy exchange between the gas components. New sim-
pler regularized equations for homogeneous binary mixtures of polyatomic gases were derived by applying
an aggregation procedure. Both systems of equations are applicable to describe f lows of moderately rar-
efied gases.

A new regularized system of equations for homogeneous binary mixtures of polyatomic relatively dense
gases was also constructed. For both systems of equations for homogeneous mixture f lows, natural formu-
las were derived for the specific heat capacities, the adiabatic index, and the total pressure of mixture. Nat-
ural balance equations for the total mass and kinetic and internal energy of mixtures hold for these sys-
tems. They were used to derive new balance equations for the total entropy of binary gas mixtures with a
nonnegative entropy production.

The last system of equations was used to develop a numerical method for computing the Rayleigh–
Taylor-type instability problem in the entire range of actual Atwood numbers from small values to ones
close to the maximum value of 1. The obtained results qualitatively agree with data presented in the liter-
ature. The numerical solution has an appropriate symmetry. Its quality is improved under spatial mesh
refinement.

The numerical algorithm has also been implemented for the computation of 3D flows. Moreover, the
2D computations described above were performed using the 3D code with a minimum number of nodes
in the third spatial direction.

The first version of the algorithm based on the regularized equations for a one-component gas has
recently been incorporated into the open software platform OpenFOAM [21]. The algorithm developed
in this paper for simulation of f lows of gas mixtures can also be included in this platform.

The developed technique can be extended to multicomponent homogeneous mixtures and can be
applied to other f lows of gas mixtures, including subsonic and supersonic jets, and to geophysical f lows at
atmospheric scales.
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