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Abstract—It is shown that the quasi-hydrodynamic (QHD) algorithm allows one to simulate viscous
uncompressible f lows in thermal convection problems at large Grashof numbers, including the correct
description of the onset of an oscillatory process. Tests for square and rectangular cavities are
described. The computations are performed by applying the QHD algorithm incorporated into the
OpenFOAM package.
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INTRODUCTION
The evaluation of the capabilities of algorithms for modeling thermal convection is required for the

subsequent adequate choice of a numerical algorithm. Of particular interest are f lows with unsteady
regimes that may precede the onset of a laminar–turbulent transition. Theoretical studies of the stability
threshold and parameters of secondary convective f lows in thermal convection problems can be found,
for example, in the classical monograph [1]. Experimental studies of f low stability have been conducted
in a wide range of Grashof (Gr) and Prandtl (Pr) numbers. Specifically, the instability of thermal convec-
tion at large Pr values of order 20 was observed in experiments with ethyl alcohol [2], while unstable f lows
at small Pr values of order 0.01 arose in melt f low problems [3].

For thermal convection problems in the Boussinesq approximation, f lows in square and rectangular
cavities in two-dimensional setting for Pr numbers of order 1 serve as indicative and convenient numerical
benchmark tests for determining the onset of oscillations. These benchmark problems are used because of
the simplicity of their formulations and the simultaneous complexity of developing f lows. Numerous
results obtained for them allow one to perform an objective evaluation of tested methods. Of particular
interest in these problems is the transition from steady-state f low to unsteady one, which occurs with an
increase in the Grashof or Rayleigh number. A detailed overview of results of modeling thermal convec-
tion in rectangular cavities produced by various algorithms is hardly possible. We note only several recent
works [4–9] (see also the bibliography therein). They involve high-order methods in time and space
applied to equations written in terms of stream function–vorticity and velocity–pressure variables [4, 5],
Lattice Boltzmann algorithms for a compressible gas at low Mach numbers [6, 9], spectral methods [7],
and methods with locally refined spatial grids [8]. These benchmark tests were also used to verify individ-
ual aspects of open-source software for f luid dynamics problems, a survey of which can be found in [10].

In this paper, thermal convection in square and rectangular cavities is modeled to test the performance
of a numerical algorithm based on regularized, or quasi-hydrodynamic (QHD) equations governing vis-
cous incompressible f luid f lows. A description of the QHD equations can be found, for example, in [11–
13]. A number of results on testing the numerical algorithm for the above problems within the framework
of research programs are given in [11–14], where two-dimensional f lows were considered in f lat and
cylindrical geometry with an approximation based on rectangular grids without parallelization of compu-
tations. Later, an improved version of the algorithm was developed, which involved three-dimensional
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unstructured meshes and an opportunity for parallelization. This version of the algorithm was incorpo-
rated as a separate module in the open-source OpenFOAM package [15], which is able to deal with com-
putational domains of complex geometry and to use multiprocessor computing systems to speed up com-
putations. A new version of the QHD algorithm as applied to the computation of thermal convection was
described in [16]. Below, its further modified version is tested on well-known two-dimensional thermal
convection problems, including the transition to an unsteady f low regime at high Grashof numbers.

The QHD equations for thermal convection problems in the Boussinesq approximation are described
in Section 1. Additionally, a brief description of the numerical algorithm is presented. In Section 2, we
consider thermal convection in a square cavity at high Grashof numbers. The transition from steady f low
to unsteady one is traced. The results allow us to refine the settings of the algorithm, estimate the conver-
gence of the numerical solution on a sequence of refined grids, and compare the numerical results with
data available in the literature. The unsteady convection problem in a 1:8 rectangular cavity at the Rayleigh
number Ra = 3.4 × 105 is considered in Section 3. The resulting conclusions are given in Section 4.

1. QHD EQUATIONS AND NUMERICAL ALGORITHM
For numerical modeling, we use the QHD method based on a regularization of the Navier–Stokes

equations. The equations are regularized assuming that the mass density of the f luid f low differs from the
average momentum of a unit volume by a small value. This difference leads to small dissipative additives
appearing in the original equations. These terms have a physical nature and allow using a conditionally
stable explicit difference scheme with all spatial derivatives approximated by central differences.

Following [11–14], the QHD system of equations in the Oberbeck–Boussinesq approximation is writ-
ten as

(1)

(2)

(3)

The velocity correction vector  and the viscous stress tensor  are given by

(4)

Here,  is the regularization parameter, which has the dimension of time. The QHD system is closely
related to the original Navier–Stokes system, and they have a number of common exact solutions. In par-
ticular, for the steady f low between two differently heated vertical infinite plates under gravity, the
Navier–Stokes exact solution given in [1] is also the exact solution of this problem for the QHD equations
[11]. For , the regularized system turns into the original system of equations.

Numerical simulations of viscous incompressible f lows have shown that spurious oscillations may
appear in the numerical solution of the temperature equation (3) when the velocity of forced convection
is high, while the thermal conductivity is low. This suggests that the regularizer introduced into the equa-
tion (which is determined by the quantity  in (4)) is insufficient. These numerical oscillations are
smoothed out by introducing another smoothing term into the right-hand side of Eq. (3), which then
becomes

(5)

This type of regularization for the temperature equation is used in the algorithm implemented in the
OpenFOAM package [15, 16].

In contrast to the Navier–Stokes equations, the Poisson equation for pressure in the QHD system fol-
lows directly from the continuity equation. Indeed, substituting the expression for  given by (4) into the
continuity equation (1), we immediately obtain the following pressure equation at constants  and :

(6)
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In this case, boundary conditions for pressure are a direct consequence of the boundary conditions for
the velocity  and its addition w set in the problem. For example, in the case of an impermeable solid wall,
the boundary conditions can be specified as zero velocity components normal to the boundary, ,
and the zero addition . These two conditions straightforwardly imply a boundary condition for
pressure of the form

(7)
To perform computations based on the QHD system, it is necessary to choose a suitable regularization

parameter . If  is too large, the terms proportional to  (regularizers) begin to dominate, which leads to
a distortion of the numerical solution and then to its destruction. If  is too small, then an unacceptably
small time step is required for the stability of the numerical solution. Numerical experience suggests that,
starting from a certain value, a decrease in  ceases to affect the accuracy of the numerical solution. The
choice of the regularization parameter determines the stability, accuracy, and labor intensity of the algo-
rithm, so its optimal value should be chosen in computations.

Computational practice suggests that the integration time step  ensuring the conditional stability of
the difference algorithm is close to .

The order of the base value of the coefficient  is determined by the condition that the coefficient in
front of the viscous terms exceeds the value of the regularization parameter. For this purpose, we nondi-
mensionalize the momentum equation (2) and estimate the values of the coefficients on its right-hand

side. The coordinates, time, velocity, pressure, and temperature are normalized by     ,

respectively, where  and  are the characteristic length and speed in the problem and  is the tem-
perature difference between the walls. After passing to dimensionless variables, Eq. (2) retains its form, but

dimensionless coefficients appear in the terms on its right-hand side, namely, the coefficient 

before the viscous terms,  before the additional terms, and  before the buoyancy term.

Comparing the coefficients multiplying the first and second terms on the right-hand side of equation, we
obtain the following condition on the value of :

(8)

Here, the characteristic f low speed is chosen in the form , which is accepted in natural con-
vection problems. Then the dimensionless coefficient in the buoyancy term becomes equal to 1. With the
chosen nondimensionalization procedure, the dimensionless parameter  is related to the Grashof

number  as follows: . For computations, the parameter  should be chosen in

the form .
A spatial approximation is constructed using the finite volume method with all spatial derivatives cal-

culated using central differences. An explicit time difference scheme is used, while the terms with molec-
ular viscosity are approximated implicitly. The stability of the algorithm is ensured by artificial dissipation,
whose value is adjusted by its nonlinear structure depending on the gradients of pressure, temperature,
and velocity.

2. THERMAL CONVECTION PROBLEM IN A SQUARE CAVITY
Due to the simplicity of its formulation and the clarity of results, thermal convection in a square cavity

has long been a convenient benchmark problem for demonstrating the properties of numerical algorithms
(see, e.g., recent works [4, 5, 8]). At low Grashof numbers, the f low is steady; for , undamped
oscillations are established in the region, which can subsequently be transformed into a two-dimensional
analogue of turbulent f low.

In [11–14] the QHD algorithm was tested on this problem at low Grashof numbers corresponding to
steady f low, namely, at . The numerical results were compared with data produced by a
second-order accurate method constructed in the stream function–vorticity variables and with experi-
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Fig. 1. Computational domain. A hot wall at the temperature Th, is on the left, while a cold wall at the temperature Tc is
on the right. 
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mental data. It was shown that the QHD algorithm remains highly accurate even on coarse grids.
Additionally, the convergence of the solution under mesh refinement and the influence of τ on the solu-
tion were demonstrated. Specifically, it was shown that the optimal value of the regularization parameter
is given by (8). The accuracy of the solution is not improved with decreasing  and degrades with increas-
ing . Below, we discuss numerical solutions of this problem obtained using OpenFOAM at high Grashof
numbers.

A schematic view of the computational domain and the setting of boundary conditions for temperature
are shown in Fig. 1.

The computational domain is a square with side length  The system is in the gravity field g =
9.81 m/s2. The upper and lower walls are adiabatic, the left wall is hot, and the right wall is cold. On the
boundaries of the domain, we set no-slip and impermeability conditions for velocity. The boundary con-
ditions for pressure are given by (7). This means that the normal derivative of pressure on the vertical walls
is set to zero, while the normal derivative of pressure on the horizontal walls is determined by the tempera-

ture. In other words, the condition  is set on the upper and lower walls, and the con-

dition  is specified on the side walls. For velocity, the no-slip condition U = 0 is set at all the bound-

aries. The upper and lower walls are assumed to be heat-insulated: .

The numerical simulation of the viscous incompressible f low was performed using the
mulesQHDFoam solver implemented in OpenFOAM. All quantities are dimensional and given in
SI units. Numerical results are also presented in SI units, except for the data in Table 3, which are given
in dimensionless form for comparison with reference data.

The two-dimensional computations were carried out using the three-dimensional algorithm with the
third dimension represented by a single cell. All computations were performed on uniform spatial grids
with square cells.

Initially, the f luid was at rest, the pressure was equal to its atmospheric value, the temperature in the
domain was , the temperature of the left wall was Th = 313.15 K, and the tem-
perature of the right wall was Tc = 273.15 K.

As a working f luid, we used air. The air parameters required for the computations are given Table 1.

The Grashof number was computed using the formula  with . The Prandtl

number in the computations was set to unity, so the Rayleigh number was . The results
of [4] show that, for air, the difference between Pr = 0.7 and Pr = 1 has a very small effect on the values
of the velocities in this problem.
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Table 1. Dimensional parameters of air at normal pressure and temperature of 20°C

Dynamic viscosity 18.1 × 10–6 kg/(m s)
Kinematic viscosity 15.06 × 10–6 m2/s
Thermal expansion coefficient 3.43 × 10–3 K−1

Density 1.205 kg/m3

Heat capacity at constant pressure Cp 1005 J/(kg K)

μ
ν

β
ρ0

Table 2. Size of the computational domain for various Grashof numbers

No Gr , cm , s

1 1.190

2 2.565

3 5.530

4 11.900

5 25.650

6 32.300

7 55.300

H τ

410 −× 49.4 10
510 −× 44.3 10
610 −× 42.0 10
710 −× 59.4 10
810 −× 54.3 10

× 82 10 −× 53.5 10
910 −× 52.0 10
The number Gr was changed by varying the size of the domain. Consistent values of the Grashof num-
ber, the parameter , and the size of the domain are given in Table 2.

The following reduced values of  were used in the computations:  for Gr =  and

 for Gr =  The time step was  for Gr =  and  for

Gr =  As initial conditions in variants 1–3, we used zero velocities and the temperature in the
domain specified as . In variants 4 and 5, we used both the same initial conditions and the
numerical results obtained for the problem with a lower value of Gr on the corresponding grid. Steady f low
regimes are independent of the initial conditions used.

Figures 2–6 show the steady-state velocity and temperature fields obtained in the thermal convection
problem on a 40 × 40 grid for the Grashof numbers given in Table 2. Streamlines (left) and isotherms
(right) are shown for  at  and for  at 

τ

τ −τ = 410 4 5 610 , 10 , 10
−τ = 510 7 8 910 , 10 , 10 . −× 42 10 4 5 6 7 810 , 10 , 10 , 10 , 10 −× 52 10

× 8 92 10 , 10 .
= = °0 20 CT T

= 4 5Gr 10 , 10 = 40 st = 6 7 8Gr 10 , 10 , 10 = 100 s.t
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Fig. 3. = 5Gr 10 .

Fig. 4. = 6Gr 10 .
Figures 2–6 confirm the evolution of the f low with increasing Gr known from a number of publica-
tions. Specifically, at , the f low is a vortex close to a circle, which distorts the temperature field.
As the Grashof number increases, the shape of the vortex f low also begins to distort. At  the vor-
tex strongly stretches in the horizontal direction and contracts in the vertical. Away from the walls, the
horizontal temperature gradient nearly vanishes, while the gradient near the vertical walls increases sig-
nificantly. In the f low core, the temperature actually varies only in the vertical.

For velocity components, Fig. 7 presents a typical pattern of reaching a steady state for  at
points 1 and 2 with coordinates (0.064, 0.064, 0.0) and (0.064, 0.192, 0.0).

For quantitative evaluation of the numerical results, they were compared with those of [4, 5], where
thermal convection in a square cavity was computed in the stream function–vorticity variables on fine
grids. In [4] a high-order accurate algorithm with a quasi-wavelet-based discrete singular convolution
(DSC) was compared with the Galerkin finite-element method. A third-order upwind scheme (Opt-
UCD3) in the stream function–vorticity variables was used in [5]. It was shown in [4] that the f low is
steady for , and an unsteady oscillation f low regime is formed at .

In Table 3, our results for f low velocity are compared with the data [4, 5] and the results of the studies
referenced therein. The comparison is carried out for the maximum horizontal velocity nondimensional-

ized according to [4, 5]:   Dimensionless variables are denoted by a tilde.

Additionally, Table 3 presents the values of the maximum dimensionless velocity  in the  coordinate
at 
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Fig. 5. = 7Gr 10 .

Fig. 6. = 8Gr 10 .
Inspection of Table 3 shows that the QHD results obtained on a 40 × 40 grid at Gr = 104, 105 agree
well with the data of [4], obtained on a 101 × 101 grid. For  the QHD algorithm requires an= 6Gr 10
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 64  No. 10  2024

Table 3. Summary of present computations and their comparison with the results of [4, 5]

Grashof number Gr
Maximum dimensionless horizontal 

speed , present computation

Maximum dimensionless horizontal 
speed  [4], speed range 

for methods from [4]

16.02, 40 × 40 grid 15.967, 15.967–16.2
33.30, 40 × 40 grid 33.51, 33.39–34.81
52.36, 40 × 40 grid
65.40, 80 × 80 grid
65.43, 160 × 160 grid

65.55, 64.6912–65.55

125.11, 40 × 40 grid 145.06, 139.7–145.266
250.00, 40 × 40 grid
281.50, 80 × 80 grid
296.52, 160 × 160 grid

295.67, 283.689–296.71

282.46, 40 × 40 grid
342.95, 80 × 80 grid
Oscillations, 160 × 160 grid
Oscillations, 320 × 320 grid

Oscillations [5]

�xu
�xu

410
510
610

710
810

× 82 10
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Fig. 7. Distributions of velocity components at points 1 and 2 for  40 × 40 grid.
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= 8Gr 10 ,

Fig. 8. Velocity magnitude. Maximum values are 0.53 and 0.51 m/s.
80 × 80 grid to agree with the results of [4] obtained on a 101 × 101 grid. For this variant, the QHD results
exhibit convergence under mesh refinement. At  a finer spatial grid is required for achieving the
prescribed accuracy. A 301 × 301 grid was used in [4]. At , the accuracy achieved on a
160 × 160 grid corresponds to the 301 × 301 grid in [4].

In [5] this problem was computed on a 129 × 129 grid at  and a 257 × 257 grid at

. For steady regimes, the results of [4, 5] are close to each other.

The onset of unsteady f low regimes in a square cavity for the Grashof numbers  and
 was obtained and analyzed in [5]. These regimes were also produced by the QHD algorithm in

the case of mesh refinement.

At , a steady f low is formed on 40 × 40 and 80 × 80 grids. On a 160 × 160 grid, the QHD
algorithm yields an undamped nonperiodic solution, which agrees with the one obtained on a 257 ×
257 grid in [5]. As an initial condition, we used the f low field obtained at . Figures 8 and 9 display
typical velocity and temperature fields at various times obtained for this case.

Figure 10 presents the velocity components and temperature vs. time at points 1 and 2 with respective
coordinates (0.08, 0.08, 0.0) and (0.08, 0.242, 0.0) for . The results were obtained on a
320 × 320 grid. As an initial condition, we also used the steady-state solution obtained at .

3. THERMAL CONVECTION IN H:8H RECTANGULAR CAVITY
In a cavity that is an elongated rectangle, oscillation regimes develop at lower Grashof numbers. Exper-

imental and numerical studies of such flows are presented in [2, 6–9]. In an experiment with ethyl alcohol
[2] (Pr ~ 20) the most intense chaotic oscillations were observed near the upper and lower boundaries of
the cavity, while a stagnant zone with weaker oscillations was formed in the center of the region.

= 7Gr 10
= 8Gr 10

= 4 5 6Gr 10 , 10 , 10

= 8Gr 10

= × 8Gr 2 10
= 9Gr 10

= × 8Gr 2 10

= 6Gr 10

= × 8Gr 2 10
= 6Gr 10
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Fig. 9. Temperature. Range of variation is from 270 to 310 K.

Fig. 10. Velocity components at points 1 and 2 as functions of time for  320 × 320 grid.
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The formulation of the problem presented below corresponds to a classical numerical test described in
detail in [6–8], where variants of undamped chaotic f low oscillations in a cavity with the width-to-height
ratio H:8H were studied at the Rayleigh number .

In the computation described below, we used a domain of the same configuration with f low parameters
Pr = 1.0 and . In dimensional form, the side lengths of the rectangle were 0.03855 and
0.3084 m, respectively. Estimate (8) for the dimensional regularization parameter was found to be

. The time step was . We used 48 × 240 and 96 × 240 grids.

For the regularization parameter , a steady-state distribution of f low parameters was
obtained in the computation. A decrease in  to the value  allowed us to simulate an unsteady,
nearly chaotic f low in the domain. The initial value for the computation was the steady regime obtained
at  Figure 11 presents contour lines for the velocities ux, uy, temperature T, and particle trajec-
tories for the solution computed on a 96 × 240 grid and averaged over the time interval 250–270. In the
case of the averaging interval 120–250, the averaged results remain nearly unchanged.

= × 5Ra 3.4 10

= = × 5Ra Gr 3.4 10

−ντ = = ×
β Δ

43 10
g TH

−410

−τ = × 43 10
τ −τ = × 55 10

−τ = × 43 10 .
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Fig. 11. Averaged flow field: velocity magnitude, ux, uy, T, isotherms, and streamlines.

Fig. 12. Velocity components at points 1 and 2 as functions of time.
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Figure 12 shows the evolution of the velocity components over time at point 1 (0.007 0.284 0.0), i.e.,
near the upper left corner of the cavity, and at point 2 (0.03 0.29 0.0), i.e., near the upper right corner of
the cavity until the time t = 270.

In [6] the unsteady f low for this problem was numerically simulated on much finer grids with a mini-
mum number of 75 × 600 nodes. In [7, 8] the unsteady f low for this problem obtained on 252 × 252 and
96 × 480 grids, respectively, was nearly regular. The averaged f low field shown in Fig. 11 qualitatively
agrees with the fields presented in [6, 8, 9]. The best agreement between the isotherms in [6, 8, 9] and the
QHD results is observed in the center and near the boundaries of the rectangular domain. The evolution
curves in Fig. 12 qualitatively agree with [9], where the computations were carried out on a 100 × 800 grid.

4. CONCLUDING REMARKS
The numerical experiments have shown that the QHD algorithm as applied to thermal convection

problems is able to simulate both steady f lows and the formation of unsteady regimes observed with
increasing Grashof number. To model these problems adequately, it is necessary to choose an appropriate
mesh size to resolve boundary layers and to select a regularization parameter determining smoothing in
the algorithm.

A comparison of the obtained numerical solutions with reference results for f lows in square and rect-
angular cavities showed that the QHD algorithm is not inferior in accuracy to the reference methods.
Moreover, the required accuracy of velocity computation is achieved on coarser grids than in algorithms
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 64  No. 10  2024
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of more complex structure with a higher order of approximation. The QHD algorithm also yields the onset
of oscillation regimes at Grashof numbers known from benchmark computations.

Thus, the QHD algorithm implemented in the OpenFOAM package seems promising for solving ther-
mal convection problems.
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