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Summary. Quasi-gasdynamic type regularization is presented for a heterogeneous model of a 
two-fluid mixture of compressible fluids. This model allows to describe the flows of stiffened 
gases. The reduced four-equation model for dynamics of the heterogeneous compressible two-
fluid mixture with equations of state of a stiffened gas is considered. A further reduced form 
of this model with the excluded volume concentrations and a quadratic equation for the 
common pressure of the components can be called a quasi-homogeneous form. A finite 
difference algorithm is used, built with the finite volume method. By solving one and two-
dimensional test problems it is shown that the presented algorithm is a stable and reliable way 
to model fluid mixtures with strong shock waves. 
 
1 INTRODUCTION 

As a rule, for numerical simulations of mixture flows homogeneous or heterogeneous 
models are used. In the homogeneous approaches is assumed that the components of the 
mixture do not have pronounced boundaries and their own volumes. In this case, the pressure 
in the mixture is calculated as the sum of the partial pressures of the components. In the 
heterogeneous approaches each component of the mixture occupies its own volume. In this 
case, the pressure in the mixture is calculated using the equations of state of the components 
and their volume fractions in the mixture. Numerical experience shows that the field of 
applicability of the heterogeneous model is wider than the homogeneous one. In particular, on 
the basis of a heterogeneous model, it is possible to simulate not only gas mixtures, but also 
gas-liquid mixtures in the approximation of the so-called "stiffened" gas, which is essential 
for practical applications. 

Two-fluid flows arise in various engineering applications. Examples of such flows are: 
 the flow of air and water vapor in a humid environment; 
 air-hydrogen flow, found in fuel cell systems or in gas transportation and storage; 
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 air-CO2 flow, for example, in industrial processes or gas exchange systems; 
 air-natural gas flow occurring in heaters powered by natural gas or in gas turbines. 
Heterogeneous compressible mixture models differ in the number of equations included in 

the system - from 4 to 7 PDE’s. In the seven-equation model by Baer-Nunziata [1] each 
component is described by its own velocity, temperature and pressure. However, for many 
applications, the physics included in this model is superfluous. Therefore, various lightened 
models are proposed, for example, a model of six equations with equilibrium velocity [2], a 
model with total pressure [3–4], a model of five equations with equilibrium velocity and 
pressure [5] and a model of four equations with equilibrium velocity, pressure and 
temperature. 

2 QUASI-HOMOGENEOUS FORM FOR HETEROGENEOUS MIXTURE 

Among the large number of algorithms for numerical simulation of the homogeneous 
mixture, here we will focus on the method based on regularized or quasi-gas dynamic 
equations [6]. These equations employ a single-temperature and single-velocity 
approximations of a mixture flow. 

In [7], a model of heterogeneous compressible two liquid mixture with four equations and 
a state equation of a stiffened gas is presented. It also presents the development of a model 
with excluded volume concentrations and a quadratic equation for the total pressure of the 
components. This variant is called a quasi-homogeneous form of the heterogeneous model. It 
is this model that we use to build a finite difference approximation and to solve test problems. 

A quasi-homogeneous system of four equations for a heterogeneous compressible two-
liquid mixture with one velocity and one temperature consists of balance equations for the 
mass of components, total momentum and total energy: 

   div 0, 1, 2,k k
k k

r
r k

t





  


u  (1)

    NSdiv div ,p
t


 


     


u

u u f  (2)

      2 2 F NS0.5 div 0.5 div .p Q
t

    
            


u u u q u u f  (3)

Here, rk – the densities αk – the volume fraction of the k -component, u – the velocity and p 
– the pressure of the mixture. f and Q denote the external force and the external source or 
drain of energy, respectively. The following additional ratios are used: 

2 2 2

1 1 1
1, , ( ), ( ) 0.k k k k k k k k kk k k

r r r T p p r T     
  

        (4)

We apply the equations of state of a stiffened gas in the form [5,7,8] 

0( ) , ( ) .k
k k k k k k k Vk k

k

p
p r T R r T p r T c T

r
 

      (5)

This approximation is based on the simplified Van der Waals equation for the liquid 
component. The ideal polytropic case corresponds to	 * 0 0k kp   . 

To exclude the values k  and kr  from the continuity equation we introduce an alternative 
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density for the k-th component	 k k kr  . Using the previous equations, we have: 

 2 2 2
01 1 1

1, , .k k k k k
V V k Vkk k k

k k

R R p
T c T c c

p p p p

 
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 
          

    (6)

The last equations lead to the equation connecting pressure, densities and internal energy: 

  2 0

1
1,  .

k k k k
kk
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p p c
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This rational equation reduces to a quadratic equation for pressure 

2 0p bp c     (8)

with the coefficients 

       2
0 1 2 2 1 0 1 21
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If at least one of * 0kp   (only such a case is considered in this paper), the discriminant of 

this equation is positive and c > 0. Thus, the positive root of this equation gives the pressure 
and the negative root is discarded as non-physical. 

The temperature T can be obtained from (8), and sound speed is calculated according to [7] 
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The approaches used in the homogeneous and heterogeneous models of gas mixtures are 
significantly different. However, the variant used here to describe a heterogeneous mixture 
formally differs from the homogeneous variant only by calculating the pressure and 
temperature of the mixture as well as the speed of sound in it. Namely, here the pressure is 
calculated according to (8), and when describing the mixture in a homogeneous 
approximation [9], the pressure of the mixture is calculated as the sum of the partial pressures 
of the components. Therefore, the above method of describing a heterogeneous mixture is 
promising from the point of view of its implementation in numerical algorithms already 
created based on a homogeneous approach.  

3 REGULARIZED EQUATIONS FOR GAS MIXTURE 

The regularized system of equations for describing the flow of two gases is presented in, 
e.g., [7 - 9] 
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The auxiliary QGD quantities are small additions to the velocity, viscous stress tensor, and 
heat flux and have the form: 

     ˆ ˆdiv , ,k k
k

p
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This system differs from the classical Navier-Stokes equations by regularizing terms 
containing a time-factor τ = α h/c, where h is the spatial mesh size and c is the speed of sound 
in the mixture, α is a tunning numerical coefficient. In solving the Euler equations, the 
viscosity μ and the thermal conductivity κ of the mixture are treated as artificial regularizers 
and are computed using τ as 

Sc, .
Pr

pc
p


     (15)

Thus, there are three free numerical parameters for tuning the dissipation properties of the 
algorithm: the coefficient α, the Schmidt number Sc, and the Prandtl number Pr. The baseline 
values are α = 0.5 and Sc = Pr = 1. It is assumed that the external force f and the heat source Q 
are equal to zero in our test problems. 

A time-explicit conditionally stable difference scheme with a second order approximation 
in space was used. It is constructed by the finite volume method on rectangular grid. All gas 
dynamic variables are assigned to the centers of the cells. Their values at the cell boundaries 
are calculated as half-sums of values in neighboring cells. Spatial derivatives at cell 
boundaries are calculated using central differences. The time step is calculated using the 
Courant-type condition  

min .
i i i

h
t

c u
  


 (16)

Note that the additional dissipation of the scheme is strongly nonlinear and depends 
substantially on the local time-depending gas dynamic parameters, see (14), automatically 
adjusting to it. 

4 1D TEST PROBLEMS 

We present the results of two numerical experiments for modeling 1D shock wave flows in 
Euler approximation, taken from [7]. The Schmidt and the Prandtl numbers here are set equal 
to 1. 

Problem A. We take a 1 m long tube filled with a mixture of water and water vapor with 
mass fraction of the vapor equals to 0.8 in the entire tube. The initial conditions are as 
follows: 
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  5
1

m
, , 2 10 Pa , 0 , 394.2489 K , 0;

s
p u T x

    
 

 
(17)

  5
2

m
, , 10 Pa, 0 , 372.8827 K , 0.

s
p u T x

   
 

 

Table 1: Stiffened gas parameters 

Substance γ cV, J/(kg K) Pa ,∗݌  J/kg ,0ߝ
Water vapor 1.43 1040 0 2030·103 

Water 2.35 1816 109 −1167 · 103 
 
Different spatial grids, α values and Courant numbers are used. Results are shown in 

Figure 1 for 0.8 = ݂݊݅ݐ ms. 

 

Figure 1: Numerical solutions at α = 0.8. Number of grid points N. Dark purple N = 2000; Blue N = 5000 
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Presented here distributions show the total density of the mixture, as well as the volume 
fraction of the liquid phase, pressure p, velocity u and the absolute temperature T of the 
mixture. N is the number of grid cells. It is seen that on a more detailed grid the solution is 
better, that confirms the convergence of the numerical results. 

Figure 1 shows a comparison of numerical solutions at α = 0.8 for a different number of N 
points. It is shown that increasing the number of points N makes the solution less smooth. 
Note, that Figure 1 (b) shows the water concentration profile α2. 

Figure 2 presents the calculation results for different values of parameter α. It is seen that 
reducing α leads to an improvement in the quality of the solution. 

  

Figure 2: Comparison of numerical solutions for density and velocity at N = 5000 for different values of α. Dark 
purple α = 0.4; Blue α = 0.8 

Problem B. Here, we simulate depressurization of a 160-m long pipe (-80 < x < 80) that is 
filled with pure carbon dioxide. The pipe is filled with liquid carbon dioxide at the left, and 
with the gas carbon dioxide at the right. The initial conditions are: 

  5
11

m
, , 6 10 Pa, 0 , 283.13 K , 0, 10;

s
p u T x     

 
 

(18)

  6
12

m
, , 10 Pa, 0 , 283.13 K , 1, 10.

s
p u T x    

 
 

  

Table 2: Stiffened gas parameters 

Substance γ cV, J/(kg K)  J/kg ,0ߝ Pa ,∗݌
Vapor 1.06 2410 9.86·105 -3.01·103 
Liquid 1.23 2440 1.32·108 −6.23·103 

 
Results at 80 = ݂݊݅ݐ ms are shown in Figure 3. Different spatial grids, values of 

regularization parameter α and Courant number β = 0.1 are used. Here are the distributions of 
the same quantities as for the previous problem, except vapor concentration profile 1 . Here 

also the increasing the number of points N makes the solution less smooth.  
Figure 4 shows the comparison of numerical solutions for temperature and velocity at 

different parameters α. A mesh with 1200 elements is used.  It is also seen here that with 
lower values of α, the fronts turn out to be steeper.  
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Figure 3: Numerical solutions at α = 0.8 for a different N. Dark purple N = 1200; Blue N = 4000 

  

Figure 4: Comparison of numerical solutions for temperature and velocity at N = 1200 for different values of α. 
Dark purple α = 0.4; Blue α = 0.8 



I. Khaytaliev, E. Shilnikov and T. Elizarova. 

 8

5 2D TEST PROBLEMS 

Here we present the results of two numerical experiments for modeling shock wave flows. 
The problem statements are taken from [7] for the air and water medium. The calculation area 
is x ∈ [-15 mm, 25 mm] and y ∈ [0 mm, 15 mm]. The cylindrical water drop with radius r = 
3.2 mm is centered at (0, 0). 

Since this problem is symmetric with respect to the X-axis, the flow around only the upper 
half of the drop is simulated, and the symmetry condition is imposed on the lower boundary. 
Input conditions are set on the left boundary and output conditions – on the right one. The slip 
conditions are set on the upper wall. These boundaries are located far enough from the drop. 

The parameters of the fluids used in these tasks are 
 

Table 3: The parameters of the fluids 

Substance γ cp, J/(kg K) J/kg ,0ߝ Pa ,∗݌
1. Air 1.4 1004.5 0 0 

2. Water 2.8 4186 8.5·108 0 
 

We use Schmidt number Sc = 1, Prandtl number Pr = 1 and Courant number β = 0.1 
Different spatial grids and values of parameter α are used. 

A smooth transition of the volume fraction at the interface of the droplet is necessary. A 
width of 2 xh   is used for the transition region [5]. This transition is given by the following 

formula: 

        1 blended 1 1 ,G G           
(19)

   2 2 3 ,G       

     
0.52 2

0.52 2
2

, 2 2
4

x
x x

x

x y r h
r h x y r h

h


  
       

Problem С. A shock wave in air impacting a water column (i.e., 2D droplet) is simulated. 
The initial conditions are as follows: air in whole region with the following parameters: 

   5, , , , 2.35438 10 Pa, , 225.86 m s , 0 m s, 381.85 K for 4 mm;x y L
p u u T x      

(20)

   5

2 2 2 5

, , , , 1 10 Pa, , 0 m s, 0 m s, 293.15 K for 4 mm, 

except for , where 1  and 1 10  (water).

x y R
p u u T x

x y r

 

   

   

     
 

The results are presented in Figure 5. Pressure profiles are shown at t = 6.25 μs, t = 6.75 μs 
and t = 18.75 μs. The uniform grid 1400 600  is used. Regularization parameter 0.8.   

It can be seen that the shape of the water droplet practically does not change under the 
influence of the shock wave. 

The numerical Schlieren function is computed as exponential distribution of ‘Density 
Gradient Magnitude’. We use reverse grayscale color map with 100 levels. For problem C 

min = 5, max = 71.25 10 ,  for problem D min = 104, max = 107. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 5: Task C. Numerical solutions at different time points on the 1400 600  grid for 0.8  : (a) t = 2.5 μs 
(numerical Schlieren); (b) t = 2.5 µs (pressure); (c) t = 3.75 µs (numerical Schlieren); (d) t = 3.75 µs (pressure); 

(e) t = 5.0 µs (numerical Schlieren); (f) t = 5.0 µs (pressure) 
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Problem D. This test is opposite to the previous one, with a water shock impacting a 
column of an air bubble, but with a much higher pressure ratio  4

1 2 1.6 10p p   . The initial 

conditions are as follows: water in whole region with the following parameters: 

   9, , , , 1.6 10 Pa, 1- , 661.81 m s, 0 m s, 593.13 K for 4 mm;x y L
p u u T x      

(21)

   5

2 2 2 3

, , , , 1.01325 10 Pa, 1- , 0 m s, 0 m s, 292.98 K for 4 mm, 

except for , where  and 1 10  (air).

x y R
p u u T x

x y r

 

   

   

    
 

The results are shown in Figure 6. Pressure profiles are demonstrated at t = 2.5 μs, t = 3.75 
μs and t = 5 μs. The uniform grid 1400 600  is used. This calculation was carried out with ߙ 
= 0.4 up to the moment t = 3.8 microseconds, after which it was necessary to increase it up to 
1.1. Without this, at the moment of collapse of the air bubble, the solution crashed. 

The shock wave, upon reaching the bubble, is partially reflected back into the water, 
forming a rarefaction wave that travels in the opposite direction. Rest of the shock wave is 
transmitted into the air bubble. The bubble is noticeably deformed. At t = 3.75 µs, the 
bubble's deformation reaches a point where it collapses upon itself. Following this 
deformation, the air within the separated bubbles is further compressed as the flow progresses. 
Beyond this point, the bubble appears to be completely dissipated. A higher resolution mesh 
would be required to investigate the details beyond this point. Nonetheless, despite the 
bubble's deformation and collapse, the numerical algorithm maintains its stability. 

Here, the waves turned out to be thinner than in the previous calculation due to the lower 
value of ߙ. The convergence of the algorithm over the grid was studied.  

Test problems simulations demonstrate the reliability of the approach used with the correct 
selection of parameters. The calculation results are in good agreement with the calculations of 
other authors and for more complex models and algorithms. The algorithm is constructed in a 
form convenient for subsequent implementation into the OpenFOAM open software package, 
as an addition to the homogeneous gas mixture model based on regularized gas dynamic 
equations already included in this package complex. 

 

12 CONCLUSIONS 

Quasi-gasdynamic regularization is presented for a heterogeneous model of a compressible 
mixture flow. The homogeneous gas model was modified to construct heterogeneous 
simplified model consisting of four equations with equations of state of a stiffened gas. This 
model with excluded volume concentrations and a quadratic equation for the total gas 
pressure has a quasi-homogeneous form. This model was realized by numerical algorithm 
with central difference approximations of all spatial derivatives. The solving of 1D and 2D 
test problems shows that the presented algorithm is a reliable way to simulate the flows of 
heterogeneous mixtures with shock waves. The algorithm is constructed in a form convenient 
for subsequent implementation into the OpenFOAM open software package, as an addition to 
the homogeneous gas mixture model already included in this complex. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 6: Task D. Numerical solutions at different time points on the 1400 600  grid: (a) t = 2.5 μs (numerical 
Schlieren); (b) t = 2.5 µs (pressure); (c) t = 3.75 µs (numerical Schlieren); (d) t = 3.75 µs (pressure); (e) 

t = 5.0 µs (numerical Schlieren); (f) t = 5.0 µs (pressure)  
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